• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
蔡鲁宁,刘雪茹,陈磊,等. 三维荧光光谱结合二阶校正算法对两种植物病原菌快速定性定量分析[J]. 食品工业科技,2022,43(9):1−12. doi: 10.13386/j.issn1002-0306.2021090083.
引用本文: 蔡鲁宁,刘雪茹,陈磊,等. 三维荧光光谱结合二阶校正算法对两种植物病原菌快速定性定量分析[J]. 食品工业科技,2022,43(9):1−12. doi: 10.13386/j.issn1002-0306.2021090083.
CAI Luning, LIU Xueru, CHEN Lei, et al. Qualitative and Quantitative Analysis of Two Plant Pathogens by Three Dimensional Fluorescence Spectroscopy Combined with Second Order Correction Algorithm[J]. Science and Technology of Food Industry, 2022, 43(9): 1−12. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090083.
Citation: CAI Luning, LIU Xueru, CHEN Lei, et al. Qualitative and Quantitative Analysis of Two Plant Pathogens by Three Dimensional Fluorescence Spectroscopy Combined with Second Order Correction Algorithm[J]. Science and Technology of Food Industry, 2022, 43(9): 1−12. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090083.

三维荧光光谱结合二阶校正算法对两种植物病原菌快速定性定量分析

Qualitative and Quantitative Analysis of Two Plant Pathogens by Three Dimensional Fluorescence Spectroscopy Combined with Second Order Correction Algorithm

  • 摘要: 本文以黄瓜细菌性角斑病病原菌丁香假单胞菌黄瓜致病变种(Pseudomonas syringae pv. Lachrymans-8PSL-8)和小麦赤霉病病原菌禾谷镰孢菌(Fusarium graminearum-ACCC37687)为研究对象,运用三维荧光光谱分析技术快速鉴别植物真菌病害和细菌病害的病原微生物,探索三维荧光光谱分析技术快速识别植物真菌细菌病害的可行性。通过收集梯度混合菌液样本的三维荧光光谱数据,使用二阶校正算法交替三线性分解(Alternating Trilinear Decomposition,ATLD)、平行因子分析(Parallel Factor Analysis,PARAFAC)、自加权交替三线性分解(Self-weighted Alternating Trilinear Decomposition,SWATLD)、交替惩罚三线性分解(Alternating Penalty Trilinear Decomposition,APTLD)和一阶算法偏最小二乘回归系数法(Partial Least Squares,PLS)对数据进行解析,提取特征激发和特征发射波长,通过对特征波长荧光强度数据和菌液在600 nm波长下的吸光度(OD600)进行多元线性回归从而建立浓度预测模型,使用留一法交叉验证(Leave-One-Out Cross Validation,LOOCV)衡量模型预测性能,进而实现复杂的菌液混合体系下对单组分的定性定量分析。丁香假单胞菌荧光特征峰是激发/发射(Ex/Em)=285 nm/340 nm、290 nm/340 nm、285 nm/332.4 nm、280 nm/361.6 nm、295 nm/361.6 nm。禾谷镰孢菌荧光特征峰是激发/发射(Ex/Em)=380 nm/468 nm、390 nm/512 nm、340 nm/511.2 nm、415 nm/511.2 nm。结果表明:丁香假单胞菌浓度预测模型(R2cv=0.92441191,RMSEP=0.005163633,R=0.961463421)比禾谷镰孢菌浓度预测模型(R2cv=0.583953931,RMSEP=0.027653679,R=0.764168784)效果更佳。本研究结果为快速鉴别真菌及细菌病害提供可利用性方法。

     

    Abstract: Pseudomonas syringae pv. Lachrymans-8 and Fusarium graminearum-ACCC37687 were used to quickly identify the pathogenic microorganisms of plant fungal diseases and bacterial diseases. To explore the feasibility of rapid identification of plant fungal and bacterial diseases by three-dimensional fluorescence spectroscopy. By collecting the three-dimensional fluorescence spectrum data of gradient mixed bacterial solution samples, the data were analyzed by second-order correction algorithm alternating trilinear decomposition (ATLD), parallel factor analysis (PARAFAC), self weighted trilinear decomposition (SWATLD), alternating penalty trilinear decomposition (APTLD) and first-order algorithm partial least squares regression coefficient method (PLS), and the characteristic excitation and emission wavelengths were extracted. The concentration prediction model was established by multiple linear regression between the fluorescence intensity data of characteristic wavelength and the absorbance (OD600) of bacterial solution at 600 nm wavelength. The prediction performance of the model was measured by the left one out cross validation (LOOCV), so as to realize the qualitative and quantitative analysis of single component in complex bacterial solution mixed system. The fluorescence characteristic peaks of Pseudomonas syringae were excitation/emission=285 nm/340 nm, 290 nm/340 nm, 285 nm/332.4 nm, 280 nm/361.6 nm, 295 nm/361.6 nm. The fluorescence characteristic peaks of Fusarium graminearum were excitation/emission=380 nm/468 nm, 390 nm/512 nm, 340 nm/511.2 nm, 415 nm/511.2 nm. The results showed that the concentration prediction model of Pseudomonas syringae-8 (R2cv=0.92441191, RMSEP=0.005163633, R=0.961463421) was better than that of Fusarium graminearum-ACCC37687 (R2cv=0.583953931, RMSEP=0.027653679, R=0.764168784). The results of this study provide an available method for rapid identification of fungal and bacterial hazards.

     

/

返回文章
返回