Study on Aroma Constituents of Manaohong Cherry Cultivar at Different Development Stages
-
摘要: 为探究玛瑙红樱桃果实发育过程中香气物质的组成和变化,采用顶空固相微萃取-气相色谱-质谱联用技术对绿熟期、着色期、商熟期和完熟期的挥发性香气成分进行了鉴定,并利用相对气味活度值ROAV评价各香气成分对樱桃果实香气的贡献,以确定关键香气物质。在4个不同发育时期,共检测出114种物质。其中,在绿熟期、着色期、商熟期和完熟期分别检出79、77、44和53种香气物质。绿熟期相对含量最高的是醇类物质,着色期、商熟期和完熟期相对含量最多的均是醛类物质。醛类物质从绿熟期开始便持续不断合成,直至商熟期达到最高值,至完熟期时又略微下降。与之相反的是,酯类物质和醇类物质在果实绿熟期和着色期大量合成,至果实商熟期时骤减至最低值,至完熟期时又略微回升。芳香醛类、C6醛类和C6醇类是构成玛瑙红樱桃最主要的香气组分,相对含量分别占挥发性物质总量的66.22%~96.70%。通过ROAV评价方法,共鉴定出20种关键香气成分,其中壬醛、芳樟醇、己醛是玛瑙红樱桃果实最重要的关键香气成分。具有青香的顺-3-己烯醛是唯一出现在商熟期的特征性关键香气成分。
-
关键词:
- 樱桃 /
- 果实发育 /
- 香气成分 /
- 相对气味活度值 /
- 顶空固相微萃取-气相色谱-质谱联用技术
Abstract: To explore the component and content of aroma constituents in Manaohong cherry during development, volatile components were determined by headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) technology at green stage, color stage, commercial stage and ripe stage. Relative odor activity value (ROAV) was used for evaluating the contribution of aroma components, in order to determine the key aroma substances. A total of 114 substances were detected at four stages. Among them, 79, 77, 44 and 53 aroma components were detected at green stage, color stage, commercial stage and ripe stage, respectively. The highest relative content was alcohols at green stage. At color stage, commercial stage and ripe stage, the highest relative content was aldehydes. Aldehydes were synthesized continuously from green stage to the maximum value at commercial stage, and then decreased slightly at the ripe stage. On the contrary, esters and alcohols were synthesized during the green and color stages, and decreased to the lowest value at the ripe stage, and then increased slightly at ripe stage. Aromatic aldehydes, C6 aldehydes and C6 alcohols were the most important aroma components of Manaohong cheery, and their relative contents account for 66.22%~96.70% of the total aroma-active compounds. According to ROAV, a total of 20 key aroma components were identified, among which nonanal, linalor and hexanal were the most important ones in Manaohong cherry. (Z)-3-hexenal with green flavor was the only characteristic key aroma component that appeared at commercial stage. -
樱桃(Prunus avium L.)为蔷薇科李属樱桃亚属植物,其外形美观、口感甘甜,且成熟期早,被誉为“早春第一果”[1]。香气是客观反映水果果实风味、成熟度和商品品质的重要指标[2],直接决定着果实及其加工品的感官品质和市场接受度,近年来已成为水果品质研究的重要热点。目前已知苹果有超过300种香气物质被鉴别出来[3],草莓有350种[4],芒果有270多种[5],番茄有400多种[6],香蕉有150多种[7]。樱桃果实香气浓郁且独特,有关其挥发性物质组成的研究受到广泛关注。Mattheis等[8]从宾库樱桃中共检出28种香气成分,主要由2-丙醇、苯甲醛、己醛等物质组成。Legua等[9]从洛里、布鲁克斯和先锋等不同品种樱桃中鉴定出31种香气成分,其中苯甲醛(22.10%)、苯甲醇(20.80%)和丁香酚(9.50%)是主要香气成分。Girard等[10]认为己醛、(E)-2-己烯醛、(E)-2-己烯醇和苯甲醛是樱桃果实最重要的香气成分。事实上,果实香气组成与含量在不同发育阶段明显不同。关于草莓[11-12]、葡萄[13-14]、杏[15-16]、梨[17-18]等果实发育进程中的香气组成及变化规律的研究已有较多报道。而樱桃果实香气研究主要集中在不同品种间香气成分的比较,对于樱桃果实不同生长发育期之间香气成分变化的研究则较少。张序[19]研究显示,己醛、(E)-2-己烯醛、苯甲醛、(E)-2-己烯醇、乙酸乙酯、己酸乙酯是红灯樱桃成熟果实的特征香气成分,这些物质在着色期大量合成,在商熟期达到高峰,完熟期出现大量乙醇,风味变劣。
玛瑙红樱桃是贵州省毕节地区自主培育的地方优良早熟品种,果形椭圆,果色鲜红,果肉厚重,有“中国南方樱桃之王”之称。本研究拟通过对玛瑙红樱桃果实不同发育期的香气成分进行定性定量检测,研究发育过程中香气组分及含量的变化情况,为探讨玛瑙红樱桃香气代谢机制提供理论依据。
1. 材料与方法
1.1 材料与仪器
玛瑙红樱桃 贵阳市乌当区下坝乡岩山村果园(分别在樱桃果实的绿熟期、着色期、商熟期和完熟期进行采样,每次取样时间为上午9:30~10:00,采后用保鲜盒盛装常温下2 h运回实验室进行洗净脱核备用);环己酮、壬酸甲酯 阿拉丁公司。
HP6890/5975C气相-质谱联用仪 美国安捷伦公司;2 cm-50/30 µm DVB/CAR/PDMS固相微萃取纤维及萃取手柄 美国Supelco公司。
1.2 实验方法
1.2.1 顶空固相微萃取条件
取混匀研碎樱桃果肉5 g,加入2 µL内标物(环己酮和壬酸甲酯),置于50 mL固相微萃取仪采样瓶中,插入装有2 cm-50/30 µm DVB/CAR/PDMS Stable Flex纤维头的手动进样器,在恒温60 ℃的磁力搅拌器(转速200 r/min)上加热,顶空萃取60 min后,移出萃取头并立即插入气相色谱仪进样口(温度250 ℃)中,热解析6 min进样。
1.2.2 色谱条件
采用HP-5MS (60 m×0.25 mm×0.25 µm)弹性石英毛细管柱,柱温38 ℃(保留2 min),以3 ℃/min升温至176 ℃,以6 ℃/min升温至272 ℃,运行时间:64 min;汽化室温度250 ℃;载气为高纯He(99.999%);柱前压15.87 psi,载气流量1.0 mL/min;不分流进样;溶剂延迟时间:3 min。
1.2.3 质谱条件
离子源为EI源;离子源温度230 ℃;四级杆温度150 ℃;电子能量70 eV;发射电流34.6 µA;倍增器电压1812 V;接口温度280 ℃;质量范围29~500 amu。
1.3 数据处理
对总离子流图中的各峰经质谱计算机数据系统检索及核对NIST20和Wiley 275标准质谱图,确定挥发性化学成分,用峰面积归一化法测定各化学成分的相对质量分数。在《化合物嗅觉阈值汇编》[20]检索香气成分的嗅觉阈值,结合各化学成分的相对质量分数,通过以下等式计算各化合物的相对气味活度值(ROAV):
ROAV=CiCmax×TmaxTi×100 式中:Ci为香气组分的相对含量(%);Ti为组分在水中的香气阈值(μg/kg);Cmax与Tmax为对样品总体风味贡献最大的组分的相对含量(%)和香气阈值(μg/kg)。
参考马士成等[21]的方法,所有组分均满足0<ROAV≤100。若ROAV≥1,说明该化合物可能对香气有直接影响,定义为关键香气成分;若0.1≤ROAV<1,说明该香气化合物起重要修饰作用。
2. 结果与分析
2.1 不同发育时期玛瑙红樱桃果实香气成分组成
玛瑙红樱桃果实在绿熟期、着色期、商熟期和完熟期的挥发性成分GC-MS总离子流图如图1所示,四个发育时期共检测到114种物质,其中包括醛类22种、萜类25种、醇类13种、酯类31种、呋喃类3种、酮类5种、烯烃类4种、烷烃类8种和其它化合物3种。不同发育阶段,果实的香气组成有所不同。
玛瑙红樱桃不同发育时期香气成分GC-MS分析结果如表1所示,绿熟期的香气组成最丰富,共检测到79种挥发性物质,其中包括醛类13种、醇类11种、酯类29种、萜类13种、呋喃类3种、酮类3种、烯烃类2种、烷烃类3种和其它化合物2种。在着色期共检测到77种挥发性物质,包括醛类15种、醇类11种、酯类20种、萜类16种、呋喃类2种、酮类4种、烯烃类2种、烷烃类5种和其它化合物2种。商熟期共检测到44种挥发性物质,包括醛类17种、醇类5种、酯类2种、萜类8种、呋喃类2种、酮类3种和烷烃类7种。可以看出,商熟期阶段是玛瑙红樱桃香气成分种类最少的时期。其中酯类、萜类和醇类种类数量减少最多,分别减少了18种、6种和8种。完熟期共检测到53种挥发性物质,包括醛类16种、醇类7种、酯类4种、萜类12种、呋喃类2种、酮类2种、烯烃类2种和烷烃类8种。
表 1 玛瑙红樱桃不同时期香气成分的GC-MS结果Table 1. GC-MS analysis result of aroma components of Manaohong cherry cultivars at different ripening stages序号 香气成分 分子式 相对含量(%) RI值 绿熟期 着色期 商熟期 完熟期 醛类 13种 15种 17种 16种 1 顺式丁烯醛(Z)-2-Butenal C4H6O − − 0.01 − 629 2 反式丁烯醛(E)-2-Butenal C4H6O − 0.01 − − 647 3 3-甲基丁醛3-Methylbutanal C5H10O 0.14 0.03 − 0.14 652 4 2-甲基丁醛2-Methylbutanal C5H10O 0.15 0.04 − 0.06 662 5 戊醛Pentanal C5H10O − − 0.01 0.01 700 6 顺-3-己烯醛(Z)-3-Hexenal C6H10O − − 0.06 − 800 7 己醛Hexanal C6H12O 0.60 2.73 2.62 4.69 800 8 反式-2-己烯醛(E)-2-hexenal C6H10O 3.60 3.63 7.06 4.16 854 9 庚醛Heptanal C7H14O − 0.01 0.02 0.03 901 10 (E)-2-庚烯醛(E)-2-Heptenal C7H12O 0.09 − 0.02 0.04 958 11 苯甲醛Benzaldehyde C7H6O 15.67 54.38 83.98 61.20 962 12 辛醛Octanal C8H16O 0.05 0.05 0.19 0.06 1003 13 苯乙醛Benzeneacetaldehyde C8H8O 0.16 0.19 − 0.46 1045 14 反-2-辛烯醛(E)-2-Octenal C8H14O 0.01 0.03 0.04 − 1060 15 壬醛Nonanal C9H18O 1.07 0.62 0.91 0.95 1104 16 反式-2-壬烯醛(E)-2-Nonenal C9H16O 0.01 0.03 0.03 0.05 1162 17 癸醛Decanal C10H20O 0.43 0.23 0.52 0.35 1206 18 (E)-2-癸烯醛(E)-2-Decenal C10H18O − − 0.03 − 1263 19 十一醛Undecanal C11H22O 0.05 0.03 0.03 0.02 1307 20 反-2- 十一烯醛(E)-2-Undecenal C11H20O − − 0.02 − 1365 21 十二醛Dodecanal C12H24O − 0.01 0.01 0.01 1409 22 金合欢基乙醛(4E,8E)-5,9,13-Trimethyl-4,8,12-tetradecatrienal C17H28O − − − 0.02 1847 合计 22.04 62.01 95.56 72.20 醇类 11种 11种 5种 7种 23 异丁醇 Isobutanal C4H8O 0.04 − − − 552 24 1-戊烯-3-醇 1-Penten-3-ol C5H10O 0.04 0.02 − − 684 25 3-甲基丁醇 3-Methylbutanol C5H12O 0.21 0.01 − − 736 26 2-甲基丁醇 2-Methylbutanol C5H12O 0.31 0.01 − − 739 27 顺式-3-己烯醇 (Z)-3-Hexenol C6H12O 0.89 0.74 − − 857 28 反式-2-己烯醇 (E)-2-Hexenol C6H12O 41.32 22.69 2.28 17.43 862 29 1-正己醇 1-Hexanol C6H14O 4.14 1.44 0.70 5.40 868 30 1-辛烯-3-醇 1-Octen-3-ol C8H16O 0.07 0.05 0.05 0.07 980 31 2-乙基己醇 2-Ethylhexanol C8H18O − − − 0.02 1030 32 苯甲醇 Benzyl alcohol C7H8O 1.42 0.83 0.04 0.33 1030 33 反-2-辛烯醇 (E)-2-Octenol C8H16O − 0.02 − − 1067 34 正辛醇 1-Octanol C8H18O 0.06 0.07 0.05 0.10 1071 35 1-壬醇 1-Nonanol C9H20O 0.09 0.02 − 0.06 1173 合计 48.59 25.86 3.13 23.45 酯类 29种 20种 2种 4种 36 己酸甲酯 Methyl caproate C7H14O2 0.05 0.01 − 0.02 925 37 己酸乙酯 Ethyl caproate C8H16O2 0.12 − − − 1000 38 (Z)-乙酸-3-己烯-1-醇酯 (Z)-3-Hexenol acetate C8H14O2 1.00 0.74 − − 1005 39 乙酸己酯 Hexyl acetate C8H16O2 3.97 1.18 0.01 0.19 1011 40 乙酸反-2-己烯酯 (E)-2-Hexenyl acetate C8H14O2 6.17 2.91 0.05 0.19 1016 41 2-己烯酸乙酯 Ethyl 2-hexenoate C8H14O2 0.04 − − − 1037 42 苯甲酸甲酯 Methyl benzoate C8H8O2 0.23 0.07 − − 1094 43 反-2-己烯-1-丙酸甲酯 (E)-2-Hexenyl propionate C9H16O2 1.28 0.17 − − 1111 44 辛酸甲酯 Methyl caprylate C9H18O2 0.02 − − − 1126 45 异丁酸己酯 Hexyl isobutyrate C10H20O2 0.05 − − − 1150 46 反-2-己烯基异丁酸酯 trans-2-Hexenyl isobutyrate C10H18O2 0.79 0.06 − − 无记录 47 苯甲酸乙酯Ethyl benzoate C9H10O2 0.23 0.02 − − 1171 48 (E)-己-3-烯基丁酸酯(E)-3-Hexenyl butanoate C10H18O2 0.05 0.03 − − 1185 49 丁酸己酯Hexyl butanoate C10H20O2 0.34 0.08 − − 1192 50 (E)-己-2-烯基丁酸酯(E)-2-Hexenyl butanoate C10H18O2 4.53 1.72 − − 1195 51 水杨酸甲酯Methyl salicylate C8H8O3 − − − 0.03 1192 52 (E)-己-2-烯基-2-甲基丁酸酯trans-2-Hexenyl 2-methylbutyrate C11H20O2 1.65 − − − 未记录 53 反-2-己烯基异戊酸酯trans-2-Hexenyl isovalerate C11H20O2 − 0.27 − − 1245 54 正戊酸叶醇酯(E)-2-Hexenyl pentanoate C11H20O2 0.12 0.03 − − 1299 55 壬酸乙酯Ethyl nonylate C11H22O2 0.07 0.02 − − 1296 56 惕各酸己酯Hexyl tiglate C11H20O2 0.05 − − − 1330 57 惕各酸-(E)-2-己烯酯(E)-2-Hexenyl tiglate C11H18O2 1.12 − − − 1339 58 (Z)-己酸-3-己烯酯(Z)-3-Hexenyl hexanoate C12H22O2 0.01 0.01 − − 1380 59 己酸己酯Hexyl caproate C12H24O2 0.04 − − − 1384 60 (E)-己酸-2-己烯酯(E)-2-Hexenyl hexanoate C12H22O2 0.60 0.28 − − 1391 61 (2E)-2-己烯酸 (2E)-2-己烯-1-酯(2E)-2-Hexenyl (2E)-2-hexenoate C12H20O2 0.06 0.04 − − 未记录 62 反-己-2-烯基庚酸酯trans-2-Hexenyl heptanoate C13H24O2 0.01 − − − 未记录 63 顺式-3-己烯醇苯甲酸酯 (Z)-3-Hexen-1-ol benzoate C13H16O2 0.01 0.01 − − 1570 64 苯甲酸己酯Hexyl benzoate C13H18O2 0.04 − − − 1580 65 (E)-2-苯甲酸己酯(E)-2-Hexenyl benzoate C13H16O2 0.57 0.35 − − 1588 66 苯甲酸苄酯Benzyl Benzoate C14H12O2 0.01 0.01 − − 1762 合计 23.24 7.99 0.06 0.49 萜类 13种 16种 8种 12种 67 α−蒎烯α−Pinene C10H16 − − − 0.04 937 68 莰烯Camphene C10H16 − − − 0.02 952 69 α−水芹烯α−Phellandrene C10H16 − − − 0.01 1005 70 柠檬烯Limonene C8H8O2 0.06 0.04 0.01 0.07 1030 71 β−水芹烯β−Phellandrene C8H8O2 − − − 0.03 1031 72 α−罗勒烯α−Ocimene C10H16 0.03 0.04 0.02 − 1047 73 芳樟醇Linalool C10H18O 0.80 0.04 0.47 0.73 1099 74 4-萜烯醇Terpinen-4-ol C10H18O − − − 0.02 1177 75 α−松油醇 α−Terpineol C10H18O − − 0.05 0.13 1189 76 香叶醇Geraniol C10H18O − − 0.01 0.03 1255 77 α−荜澄茄油烯 α−Cubebene C15H24 0.02 0.01 − − 1351 78 胡椒烯Copaene C15H24 0.18 0.10 − − 1376 79 大马烯酮Damascenone C13H18O − − 0.01 − 1386 80 β−波旁烯β−Bourbonene C15H24 − 0.05 − − 1384 81 茉莉酮(Z)-Jasmone C11H16O 0.03 0.10 − − 1394 82 β−石竹烯β−Caryophyllene C15H24 0.54 0.24 − − 1419 83 α−紫罗兰酮α−Ionone C13H20O 0.01 0.01 − 0.03 1426 84 β−二氢紫罗兰酮Dihydro-β−ionone C13H22O 0.01 − − − 1433 85 香叶基丙酮Geranyl acetone C13H22O 0.04 0.03 0.02 0.29 1453 86 葎草烯Humulene C15H24 0.08 0.03 − 1454 87 香树烯Alloaromadendrene C15H24 − 0.02 − − 1461 88 β−紫罗兰酮β−Ionone C13H20O 0.18 0.10 0.01 0.16 1491 89 α−金合欢烯α−Farnesene C15H24 − 0.01 − − 1508 90 δ−杜松烯δ−Cadinene C15H24 0.02 0.01 − − 1524 91 橙花叔醇Nerolidol C15H26O − 0.07 − − 1544 合计 2.00 1.56 0.60 1.56 呋喃类 3种 2种 2种 2种 92 2-乙基呋喃2-Ethylfuran C6H8O 0.01 0.01 0.01 0.01 703 93 2-戊基呋喃2-Pentylfuran C9H14O 0.13 0.02 0.01 0.07 993 94 反2-2-戊基呋喃trans-2-(2-Pentenyl)furan C9H12O 0.02 − − − 1002 合计 0.16 0.03 0.02 0.08 酮类 3种 4种 3种 2种 95 2,3-丁二酮 2,3-Butanedione C4H6O2 − − − 0.03 595 96 1-戊烯-3-酮 1-Penten-3-one C5H8O 0.03 0.01 0.01 − 681 97 1-辛烯-3-酮 1-Octen-3-one C8H14O − 0.05 − − 979 98 2,3-辛二酮 2,3-Octanedione C8H14O2 0.04 0.05 0.01 − 984 99 6-甲基-5-庚烯-2-酮 6-Methyl-5-heptene-2-one C8H14O 0.14 0.09 0.01 0.53 986 合计 0.21 0.2 0.03 0.56 烯烃类 2种 2种 0种 2种 100 2,4-已二烯(Z) (Z)-2,4-Hexadiene C6H10 0.02 − − − 654 101 苯乙烯 Styrene C8H8 − − − 0.04 1045 102 (E)-4,8-二甲基壬-1,3,7-三烯(E)-4,8-Dimethylnona-1,3,7-triene C11H18 − 0.12 − − 1116 103 2,6,10,10-四甲基-1-氧杂螺[4,5]癸-6-烯1-Oxaspiro[4,5]dec-6-ene, 2,6,10,10-tetramethyl- C13H22O 0.02 0.02 0.00 0.01 1302 合计 0.04 0.14 0 0.05 烷烃类 3种 5种 7种 8种 104 壬烷Nonane C9H20 − − 0.01 0.04 900 105 癸烷Decane C10H22 − − − 0.03 1000 106 十三烷Tridecane C13H28 − 0.01 0.01 0.01 1300 107 十四烷Tetradecane C14H30 − − 0.01 0.03 1400 108 十五烷Pentadecane C15H32 − 0.02 0.01 0.03 1500 109 十六烷Hexadecane C16H34 0.01 0.01 0.01 0.03 1600 110 十七烷Heptadecane C17H36 0.01 0.01 0.01 0.01 1700 111 十八烷Octadecane C18H38 0.01 0.01 0.01 0.01 1800 合计 0.03 0.06 0.07 0.19 其他 2种 2种 0种 0种 112 二甲基硫醚Dimethyl sulfide C2H6S 0.37 − − − 520 113 己酸Hexanoic acid C6H12O2 0.06 0.23 − − 990 114 苄腈Benzyl nitrile C8H7N − 0.01 − − 1144 合计 0.43 0.24 0 0 注: “−”表示该成分香气未检测到;RI值为保留指数。 2.2 不同发育时期玛瑙红樱桃果实香气成分的变化
2.2.1 醛类物质
如图2所示,在四个发育成熟阶段,醛类物质始终是玛瑙红樱桃的主要香气成分,随着果实不断成熟,呈现先上升后下降的趋势。除绿熟期相对含量比醇类物质低以外,醛类物质在其余发育成熟阶段的相对含量均最高。进入着色期后,醛类物质迅速增长,直至商熟期达到最高值95.56%,之后随着果实完全成熟,在完熟期下降至72.20%。可见,醛类物质在着色期到商熟期之间被大量合成。C6醛类和芳香醛类是玛瑙红樱桃中最主要的香气物质,与红灯樱桃、先锋樱桃和斯坦勒樱桃等大多数樱桃一致[19,22-24]。玛瑙红樱桃中醛类物质的变化主要与芳香醛类和C6醛类化合物有关。
芳香醛类化合物中最主要的是苯甲醛,占醛类挥发性物质总量的71.10%~87.88%。苯甲醛在绿熟期的相对含量仅为15.67%,随着果实成熟而升高,在着色期上升至54.38%,商熟期达到最高值83.98%,完熟期下降至61.20%。苯甲醛具有樱桃香和苦杏仁味,其苦杏仁味主要是由核果中苦杏仁苷酶促水解而产生[10,22]。目前已报道的成熟布鲁克斯、萨米脱、先锋、红灯等8个樱桃品种中[9,25],苯甲醛相对含量为2.54%~39.3%,均远低于本研究中玛瑙红樱桃的苯甲醛相对含量。
C6醛类化合物(反式-2-己烯醛、己醛、顺-3-己烯醛)在绿熟期的相对含量仅为4.20%,随着果实的成熟不断升高,在着色期上升至6.36%,商熟期达到最高值9.74%,完熟期下降至8.85%。张序[19]、陈美霞[26]、Engel[27]、Chapman[28]等的研究显示,在红灯樱桃、桃、油桃和杏等核果类果实发育过程中,C6醛类化合物在着色期相对含量最高,然后随果实成熟逐渐下降。与此不同的是,本研究中玛瑙红樱桃C6醛类化合物相对含量持续增加至商熟期达到最高值,随果实完全成熟才开始下降。这可能与果实中脂氧合酶的活性有关。醛类物质主要是通过脂肪酸途径产生,脂氧合酶是脂肪酸途径的关键酶,由脂肪酸在脂氧合酶的作用下,经过氧化、裂解及脱氢作用转化成相应的醛类。脂氧合酶活性在果实发育后期是下降的。因此,完熟期玛瑙红樱桃中C6醛类化合物相对含量下降可能与脂氧合酶的活性减弱有关。
2.2.2 醇类物质
在发育成熟过程中,玛瑙红樱桃中的醇类物质呈现先下降后上升的趋势。如图2所示,在绿熟期时,醇类物质的相对含量最高,达到48.59%;随着果实成熟,相对含量不断下降,在着色期下降至25.86%,商熟期达到最低值3.13%,完熟期回升至23.45%。C6醇类,包括反式-2-己烯醇、1-正己醇和顺式-3-己烯醇是果蔬中青香型气味的主要来源,并且也是玛瑙红樱桃中最主要的醇类物质,占醇类挥发性物质总量的95.21%~97.36%。其中反式-2-己烯醇相对含量最高,绿熟期高达41.32%,在完熟期降至17.43%。反式-2-己烯醇也是拉宾斯、先锋、宾库等樱桃的主要醇类物质[10,29]。1-正己醇在绿熟期和完熟期相对含量较高,分别为4.14%和5.40%;着色期和商熟期较低,为1.44%和0.70%。玛瑙红樱桃中1-正己醇相对含量高于雷尼尔、拉宾斯、斯坦纳、芝罘红和砂蜜豆等樱桃[24,30]。
2.2.3 酯类物质
酯类物质是许多果实香气的主要成分[11,26,31],在樱桃果实中普遍含量较少。如在红灯、斯坦勒、水晶、先锋、萨米脱、黑珍珠、拉宾斯等樱桃品种中含量仅有0.30%~2.72%[16,19]。本研究发现,绿熟期和着色期阶段的玛瑙红樱桃酯类物质相对含量分别高达23.24%和7.99%。反-2-己烯酯、反-己-2-烯基丁酸酯和乙酸己酯是绿熟期和着色期最主要的酯类化合物,三者相对含量之和分别占绿熟期和着色期酯类挥发性物质总量的63.12%和72.72%。随着果实发育成熟,酯类物质相对含量大幅减少。进入商熟期后,酯类物质相对含量骤降至最低0.06%,在完熟期小幅回升至0.49%。并且,反-2-己烯酯和乙酸己酯是商熟期仅有的两种酯类物质;而反-2-己烯酯、乙酸己酯、己酸甲酯和水杨酸甲酯是完熟期仅有的4种酯类物质。与玛瑙红樱桃酯类物质相对含量变化不同的是,红灯樱桃中酯类物质在绿熟期相对含量最低(0.30%),随着果实发育成熟,不断上升至2.00%[25]。酯类物质是水果中果香味的主要来源,酯类物质的差异可能是引起不同品种樱桃风味不同的主要原因,有待进一步研究。
2.2.4 萜类物质
玛瑙红樱桃中的萜类物质种类较丰富,但相对含量较低;绿熟期、着色期、商熟期和完熟期的相对含量分别为2.00%、1.56%、0.60%和1.56%。其变化趋势与醛类物质一致,呈现先下降后上升的趋势。在水晶、佐藤堇、红灯、甜心樱桃中的萜类物质含量也普遍较低[22,24,32]。由于萜类物质香气阈值普遍也极低,因此它们对果实香气的贡献作用不容忽视,可以赋予果实丰富的花香[22]。四个发育时期,所有萜类物质的相对含量均未超过1.00%,其中最高的是芳樟醇和β-石竹烯,占萜类挥发性物质总量的17.95%~78.33%。
2.2.5 其它物质
酮类、呋喃类、烷烃类等其他物质的种类虽然比较丰富,但在四个发育时期的相对含量极低,仅占香气总量的0.08%~0.86%。
2.3 不同发育时期玛瑙红樱桃果实关键香气成分
相关研究表明,超过10000种挥发性成分被相继检测和报道,然而研究发现其中仅有很少一部分成分能够影响食品的整体呈香,这类挥发性成分被称作“关键香气成分”[21-33]。挥发性成分含量的高低并不能说明其对香气品质的贡献程度,只有含量超过其香气阈值的少数物质对果实的香气起关键作用[34-35]。如表2所示,共鉴定出20种ROAV值不小于1的关键香气成分,包括11种醛类、3种醇类、3种萜类、2种酯类、1种呋喃。绿熟期、着色期、商熟期、完熟期分别鉴定出15、13、10和15种关键香气成分。在四个发育阶段,壬醛和芳樟醇均是最重要的关键香气成分。壬醛具有柑橘味和青叶香,除着色期ROAV值为89.91以外,壬醛在绿熟期、商熟期和完熟期的ROAV值均为100。芳樟醇赋予樱桃花香和薰衣草香,在着色期的ROAV值为100,在绿熟期、商熟期、完熟期分别为75.12、51.87、76.87。己醛具有青草香,在绿熟期ROAV值(11.31)较低,在着色期、商熟期和完熟期具有很高的ROAV值(57.80~98.70)。除壬醛、芳樟醇、己醛以外,绿熟期最主要的关键香气成分依次还有反式-2-己烯醇、乙酸己酯、2-甲基丁醛;着色期最主要的关键香气成分依次有反式-2-己烯醇、乙酸己酯、苯甲醛;商熟期最主要的关键香气成分依次有顺-3-己烯醛和苯甲醛;完熟期最主要的关键香气成分依次有反式-2-己烯醇、苯乙醛。这些关键香气成分的ROAV值均大于10。
表 2 玛瑙红樱桃不同时期香气成分的气味描述、香气阈值及相对香气活度值Table 2. Odor description, odor threshold and relative odor active value of aroma compounds of Manaohong cherry cultivars at four stages香气成分 香气描述 香气阈值(μg/kg) 相对气味活度值(ROAV) 绿熟期 着色期 商熟期 完熟期 醛类 11种 11种 10种 11种 1 3-甲基丁醛3-Methylbutanal 苹果香 1.50 8.83 3.27 − 9.88 2 2-甲基丁醛2-Methylbutanal 烘烤香 1.10 12.80 5.63 − 5.26 3 戊醛Pentanal − 12.00 − − 0.12 0.11 4 顺-3-己烯醛(Z)-3-Hexenal 青香 0.20 − − 35.24 − 5 己醛Hexanal 青草 5.00 11.31 78.56 57.80 98.70 6 反式-2-己烯醛(E)-2-hexenal 苹果,青叶香 110.00 3.07 4.76 7.06 3.98 7 苯甲醛Benzaldehyde 樱桃,杏仁 751.00 1.96 10.43 12.32 8.57 8 辛醛Octanal 橙皮 3.40 1.30 1.99 6.12 1.70 9 苯乙醛Benzeneacetaldehyde 蜂蜜,玫瑰花香 4.00 3.85 6.66 − 12.01 10 反-2-辛烯醛(E)-2-Octenal 青叶香,坚果香,脂香 3.00 0.44 1.34 1.58 − 11 壬醛Nonanal 脂香,柑橘,青叶香 1.00 100.00 89.91 100.00 100.00 12 反式-2-壬烯醛(E)-2-Nonenal 青香、黄瓜、柑橘 1.10 0.77 3.67 2.50 4.30 13 癸醛Decanal 薄荷,青叶 70.00 0.58 0.47 0.82 0.53 醇类 5种 4种 2种 3种 14 3-甲基丁醇3-Methylbutanol − 2800.00 0.01 − − − 15 顺式-3-己烯醇 (Z)-3-Hexenol 青叶香气 13.00 6.44 8.15 − − 16 反式-2-己烯醇 (E)-2-Hexenol 青香、果香、蔬菜香和草香 100.00 38.80 32.69 2.51 18.33 17 1-正己醇1-Hexanol 青草味 500.00 0.78 0.41 0.15 1.14 18 1-壬醇1-Nonanol 花香、果香 18.00 0.49 0.14 − 0.33 酯类 4种 3种 0种 0种 19 乙酸己酯Hexyl acetate 水果、青香、苹果 17.00 21.95 14.84 − − 20 苯甲酸甲酯Methyl benzoate 花香、蜂蜜 73.00 0.29 0.13 − − 21 苯甲酸乙酯Ethyl benzoate 花香 55.56 0.39 − − − 22 (E)-己-2-烯基丁酸酯(E)-2-Hexenyl butanoate − 320.00 1.33 0.77 − − 萜类 5种 3种 3种 5种 23 柠檬烯Limonene 柑橘,薄荷 10.00 0.60 0.53 0.11 0.77 24 芳樟醇Linalool 花香,薰衣草 1.00 75.12 100.00 51.87 76.87 25 β−石竹烯β−Caryophyllene 辛香、木香和萜烯的香气 500.00 0.10 − − − 26 α−紫罗兰酮α−Ionone 木香,紫罗兰香 0.60 2.03 − − 5.08 27 香叶基丙酮Geranyl acetone 花果香 60.00 − − − 0.50 28 β−紫罗兰酮β−Ionone 紫罗兰香气 70.00 0.24 1.96 0.17 2.45 其它 2种 3种 2种 3种 29 2,3-丁二酮2,3-Butanedione − 6.00 − − − 0.51 30 1-辛烯-3-酮1-Octen-3-one 具有清新泥土、蘑菇、蔬菜香气 10.00 − 0.65 − − 31 6-甲基-5-庚烯-2-酮6-Methyl-5-heptene-2-one 水果香气及柠檬草香气 68.00 0.20 0.19 0.02 0.82 32 2-戊基呋喃2-Pentylfuran 清香、青豆味、金属味 6.00 1.96 0.58 0.22 1.17 注: “−”表示该成分香气描述未被查询到或该物质ROAV<0.1;香气描述通过“Perflavory Information System”查询。 值得注意的是,壬醛和芳樟醇的相对含量在四个发育时期均未超过2.00%;但两者ROAV值很高,这充分说明香气阈值对气味贡献的重要性。类似地,具有苹果香的3-甲基丁醛、具有烘烤香的2-甲基丁醛、具有玫瑰香和蜂蜜香的苯乙醛在绿熟期、着色期、完熟期的相对含量均未超过0.50%,但ROAV值达到3.27%~12.80%。拉宾斯、雷尼尔樱桃中3-甲基丁醛的相对含量也极低,仅为0.65%~0.81%;但FD稀释因子均高达16,对拉宾斯、雷尼尔樱桃有显著的香气贡献作用,这与本研究的发现一致[24]。虽然与其他发育阶段相比,商熟期的关键香气成分较少,但风味并不单一。具有苹果香、青叶香的反式-2-己烯醛、具有橙皮味的辛醛以及具有樱桃、杏仁味的苯甲醛在商熟期的ROAV值均是最高的,赋予了商熟期玛瑙红樱桃丰富的风味。具有青香的顺-3-己烯醛是唯一出现在商熟期的特征性关键香气成分,ROAV值达35.24,可以作为区分鉴别玛瑙红樱桃商熟期的重要参考。
3. 结论
本研究采用HS-SPME-GC-MS技术从不同发育时期的玛瑙红樱桃中共检测出114种芳香化合物。在绿熟期玛瑙红樱桃中检测出79种挥发性化合物,着色期检测出77种、商熟期检测出44种、完熟期检测出53种。其中相对含量最多的是醛类物质和醇类物质,并且以芳香醛类、C6醛类和C6醇类构成最主要的香气组分,相对含量分别占绿熟期、着色期、商熟期和完熟期挥发性物质总量的66.22%、85.61%、96.70%和92.88%。酯类物质和醇类物质在果实绿熟期和着色期大量合成,在商熟期被大量代谢消耗,相对含量骤减至最低值,至完熟期时又略微回升。与之相反的是,醛类物质从绿熟期开始便持续不断合成,直至商熟期达到最高值,至完熟期时又略微下降。通过ROAV值评价方法,共鉴定出20种ROAV值不小于1的关键香气成分,其中壬醛、芳樟醇、己醛是最重要的关键香气成分,对玛瑙红樱桃的香气品质具有极其重要贡献,是构成玛瑙红樱桃呈香风格的关键香气化合物。具有青香的顺-3-己烯醛是唯一出现在商熟期的特征性关键香气成分。目前,不同樱桃品种在发育过程中香气物质含量有所差异,参与香气组成的醛类、醇类、酯类等物质的合成和代谢速度也各不相同。产地海拔与气候、产地栽培环境、人工施肥等因素的不同均会导致不同品种樱桃果实香气物质的差异。因此,全面了解并掌握樱桃果实香气物质的组成与变化特征,还需要更加深入和系统的研究。
-
表 1 玛瑙红樱桃不同时期香气成分的GC-MS结果
Table 1 GC-MS analysis result of aroma components of Manaohong cherry cultivars at different ripening stages
序号 香气成分 分子式 相对含量(%) RI值 绿熟期 着色期 商熟期 完熟期 醛类 13种 15种 17种 16种 1 顺式丁烯醛(Z)-2-Butenal C4H6O − − 0.01 − 629 2 反式丁烯醛(E)-2-Butenal C4H6O − 0.01 − − 647 3 3-甲基丁醛3-Methylbutanal C5H10O 0.14 0.03 − 0.14 652 4 2-甲基丁醛2-Methylbutanal C5H10O 0.15 0.04 − 0.06 662 5 戊醛Pentanal C5H10O − − 0.01 0.01 700 6 顺-3-己烯醛(Z)-3-Hexenal C6H10O − − 0.06 − 800 7 己醛Hexanal C6H12O 0.60 2.73 2.62 4.69 800 8 反式-2-己烯醛(E)-2-hexenal C6H10O 3.60 3.63 7.06 4.16 854 9 庚醛Heptanal C7H14O − 0.01 0.02 0.03 901 10 (E)-2-庚烯醛(E)-2-Heptenal C7H12O 0.09 − 0.02 0.04 958 11 苯甲醛Benzaldehyde C7H6O 15.67 54.38 83.98 61.20 962 12 辛醛Octanal C8H16O 0.05 0.05 0.19 0.06 1003 13 苯乙醛Benzeneacetaldehyde C8H8O 0.16 0.19 − 0.46 1045 14 反-2-辛烯醛(E)-2-Octenal C8H14O 0.01 0.03 0.04 − 1060 15 壬醛Nonanal C9H18O 1.07 0.62 0.91 0.95 1104 16 反式-2-壬烯醛(E)-2-Nonenal C9H16O 0.01 0.03 0.03 0.05 1162 17 癸醛Decanal C10H20O 0.43 0.23 0.52 0.35 1206 18 (E)-2-癸烯醛(E)-2-Decenal C10H18O − − 0.03 − 1263 19 十一醛Undecanal C11H22O 0.05 0.03 0.03 0.02 1307 20 反-2- 十一烯醛(E)-2-Undecenal C11H20O − − 0.02 − 1365 21 十二醛Dodecanal C12H24O − 0.01 0.01 0.01 1409 22 金合欢基乙醛(4E,8E)-5,9,13-Trimethyl-4,8,12-tetradecatrienal C17H28O − − − 0.02 1847 合计 22.04 62.01 95.56 72.20 醇类 11种 11种 5种 7种 23 异丁醇 Isobutanal C4H8O 0.04 − − − 552 24 1-戊烯-3-醇 1-Penten-3-ol C5H10O 0.04 0.02 − − 684 25 3-甲基丁醇 3-Methylbutanol C5H12O 0.21 0.01 − − 736 26 2-甲基丁醇 2-Methylbutanol C5H12O 0.31 0.01 − − 739 27 顺式-3-己烯醇 (Z)-3-Hexenol C6H12O 0.89 0.74 − − 857 28 反式-2-己烯醇 (E)-2-Hexenol C6H12O 41.32 22.69 2.28 17.43 862 29 1-正己醇 1-Hexanol C6H14O 4.14 1.44 0.70 5.40 868 30 1-辛烯-3-醇 1-Octen-3-ol C8H16O 0.07 0.05 0.05 0.07 980 31 2-乙基己醇 2-Ethylhexanol C8H18O − − − 0.02 1030 32 苯甲醇 Benzyl alcohol C7H8O 1.42 0.83 0.04 0.33 1030 33 反-2-辛烯醇 (E)-2-Octenol C8H16O − 0.02 − − 1067 34 正辛醇 1-Octanol C8H18O 0.06 0.07 0.05 0.10 1071 35 1-壬醇 1-Nonanol C9H20O 0.09 0.02 − 0.06 1173 合计 48.59 25.86 3.13 23.45 酯类 29种 20种 2种 4种 36 己酸甲酯 Methyl caproate C7H14O2 0.05 0.01 − 0.02 925 37 己酸乙酯 Ethyl caproate C8H16O2 0.12 − − − 1000 38 (Z)-乙酸-3-己烯-1-醇酯 (Z)-3-Hexenol acetate C8H14O2 1.00 0.74 − − 1005 39 乙酸己酯 Hexyl acetate C8H16O2 3.97 1.18 0.01 0.19 1011 40 乙酸反-2-己烯酯 (E)-2-Hexenyl acetate C8H14O2 6.17 2.91 0.05 0.19 1016 41 2-己烯酸乙酯 Ethyl 2-hexenoate C8H14O2 0.04 − − − 1037 42 苯甲酸甲酯 Methyl benzoate C8H8O2 0.23 0.07 − − 1094 43 反-2-己烯-1-丙酸甲酯 (E)-2-Hexenyl propionate C9H16O2 1.28 0.17 − − 1111 44 辛酸甲酯 Methyl caprylate C9H18O2 0.02 − − − 1126 45 异丁酸己酯 Hexyl isobutyrate C10H20O2 0.05 − − − 1150 46 反-2-己烯基异丁酸酯 trans-2-Hexenyl isobutyrate C10H18O2 0.79 0.06 − − 无记录 47 苯甲酸乙酯Ethyl benzoate C9H10O2 0.23 0.02 − − 1171 48 (E)-己-3-烯基丁酸酯(E)-3-Hexenyl butanoate C10H18O2 0.05 0.03 − − 1185 49 丁酸己酯Hexyl butanoate C10H20O2 0.34 0.08 − − 1192 50 (E)-己-2-烯基丁酸酯(E)-2-Hexenyl butanoate C10H18O2 4.53 1.72 − − 1195 51 水杨酸甲酯Methyl salicylate C8H8O3 − − − 0.03 1192 52 (E)-己-2-烯基-2-甲基丁酸酯trans-2-Hexenyl 2-methylbutyrate C11H20O2 1.65 − − − 未记录 53 反-2-己烯基异戊酸酯trans-2-Hexenyl isovalerate C11H20O2 − 0.27 − − 1245 54 正戊酸叶醇酯(E)-2-Hexenyl pentanoate C11H20O2 0.12 0.03 − − 1299 55 壬酸乙酯Ethyl nonylate C11H22O2 0.07 0.02 − − 1296 56 惕各酸己酯Hexyl tiglate C11H20O2 0.05 − − − 1330 57 惕各酸-(E)-2-己烯酯(E)-2-Hexenyl tiglate C11H18O2 1.12 − − − 1339 58 (Z)-己酸-3-己烯酯(Z)-3-Hexenyl hexanoate C12H22O2 0.01 0.01 − − 1380 59 己酸己酯Hexyl caproate C12H24O2 0.04 − − − 1384 60 (E)-己酸-2-己烯酯(E)-2-Hexenyl hexanoate C12H22O2 0.60 0.28 − − 1391 61 (2E)-2-己烯酸 (2E)-2-己烯-1-酯(2E)-2-Hexenyl (2E)-2-hexenoate C12H20O2 0.06 0.04 − − 未记录 62 反-己-2-烯基庚酸酯trans-2-Hexenyl heptanoate C13H24O2 0.01 − − − 未记录 63 顺式-3-己烯醇苯甲酸酯 (Z)-3-Hexen-1-ol benzoate C13H16O2 0.01 0.01 − − 1570 64 苯甲酸己酯Hexyl benzoate C13H18O2 0.04 − − − 1580 65 (E)-2-苯甲酸己酯(E)-2-Hexenyl benzoate C13H16O2 0.57 0.35 − − 1588 66 苯甲酸苄酯Benzyl Benzoate C14H12O2 0.01 0.01 − − 1762 合计 23.24 7.99 0.06 0.49 萜类 13种 16种 8种 12种 67 α−蒎烯α−Pinene C10H16 − − − 0.04 937 68 莰烯Camphene C10H16 − − − 0.02 952 69 α−水芹烯α−Phellandrene C10H16 − − − 0.01 1005 70 柠檬烯Limonene C8H8O2 0.06 0.04 0.01 0.07 1030 71 β−水芹烯β−Phellandrene C8H8O2 − − − 0.03 1031 72 α−罗勒烯α−Ocimene C10H16 0.03 0.04 0.02 − 1047 73 芳樟醇Linalool C10H18O 0.80 0.04 0.47 0.73 1099 74 4-萜烯醇Terpinen-4-ol C10H18O − − − 0.02 1177 75 α−松油醇 α−Terpineol C10H18O − − 0.05 0.13 1189 76 香叶醇Geraniol C10H18O − − 0.01 0.03 1255 77 α−荜澄茄油烯 α−Cubebene C15H24 0.02 0.01 − − 1351 78 胡椒烯Copaene C15H24 0.18 0.10 − − 1376 79 大马烯酮Damascenone C13H18O − − 0.01 − 1386 80 β−波旁烯β−Bourbonene C15H24 − 0.05 − − 1384 81 茉莉酮(Z)-Jasmone C11H16O 0.03 0.10 − − 1394 82 β−石竹烯β−Caryophyllene C15H24 0.54 0.24 − − 1419 83 α−紫罗兰酮α−Ionone C13H20O 0.01 0.01 − 0.03 1426 84 β−二氢紫罗兰酮Dihydro-β−ionone C13H22O 0.01 − − − 1433 85 香叶基丙酮Geranyl acetone C13H22O 0.04 0.03 0.02 0.29 1453 86 葎草烯Humulene C15H24 0.08 0.03 − 1454 87 香树烯Alloaromadendrene C15H24 − 0.02 − − 1461 88 β−紫罗兰酮β−Ionone C13H20O 0.18 0.10 0.01 0.16 1491 89 α−金合欢烯α−Farnesene C15H24 − 0.01 − − 1508 90 δ−杜松烯δ−Cadinene C15H24 0.02 0.01 − − 1524 91 橙花叔醇Nerolidol C15H26O − 0.07 − − 1544 合计 2.00 1.56 0.60 1.56 呋喃类 3种 2种 2种 2种 92 2-乙基呋喃2-Ethylfuran C6H8O 0.01 0.01 0.01 0.01 703 93 2-戊基呋喃2-Pentylfuran C9H14O 0.13 0.02 0.01 0.07 993 94 反2-2-戊基呋喃trans-2-(2-Pentenyl)furan C9H12O 0.02 − − − 1002 合计 0.16 0.03 0.02 0.08 酮类 3种 4种 3种 2种 95 2,3-丁二酮 2,3-Butanedione C4H6O2 − − − 0.03 595 96 1-戊烯-3-酮 1-Penten-3-one C5H8O 0.03 0.01 0.01 − 681 97 1-辛烯-3-酮 1-Octen-3-one C8H14O − 0.05 − − 979 98 2,3-辛二酮 2,3-Octanedione C8H14O2 0.04 0.05 0.01 − 984 99 6-甲基-5-庚烯-2-酮 6-Methyl-5-heptene-2-one C8H14O 0.14 0.09 0.01 0.53 986 合计 0.21 0.2 0.03 0.56 烯烃类 2种 2种 0种 2种 100 2,4-已二烯(Z) (Z)-2,4-Hexadiene C6H10 0.02 − − − 654 101 苯乙烯 Styrene C8H8 − − − 0.04 1045 102 (E)-4,8-二甲基壬-1,3,7-三烯(E)-4,8-Dimethylnona-1,3,7-triene C11H18 − 0.12 − − 1116 103 2,6,10,10-四甲基-1-氧杂螺[4,5]癸-6-烯1-Oxaspiro[4,5]dec-6-ene, 2,6,10,10-tetramethyl- C13H22O 0.02 0.02 0.00 0.01 1302 合计 0.04 0.14 0 0.05 烷烃类 3种 5种 7种 8种 104 壬烷Nonane C9H20 − − 0.01 0.04 900 105 癸烷Decane C10H22 − − − 0.03 1000 106 十三烷Tridecane C13H28 − 0.01 0.01 0.01 1300 107 十四烷Tetradecane C14H30 − − 0.01 0.03 1400 108 十五烷Pentadecane C15H32 − 0.02 0.01 0.03 1500 109 十六烷Hexadecane C16H34 0.01 0.01 0.01 0.03 1600 110 十七烷Heptadecane C17H36 0.01 0.01 0.01 0.01 1700 111 十八烷Octadecane C18H38 0.01 0.01 0.01 0.01 1800 合计 0.03 0.06 0.07 0.19 其他 2种 2种 0种 0种 112 二甲基硫醚Dimethyl sulfide C2H6S 0.37 − − − 520 113 己酸Hexanoic acid C6H12O2 0.06 0.23 − − 990 114 苄腈Benzyl nitrile C8H7N − 0.01 − − 1144 合计 0.43 0.24 0 0 注: “−”表示该成分香气未检测到;RI值为保留指数。 表 2 玛瑙红樱桃不同时期香气成分的气味描述、香气阈值及相对香气活度值
Table 2 Odor description, odor threshold and relative odor active value of aroma compounds of Manaohong cherry cultivars at four stages
香气成分 香气描述 香气阈值(μg/kg) 相对气味活度值(ROAV) 绿熟期 着色期 商熟期 完熟期 醛类 11种 11种 10种 11种 1 3-甲基丁醛3-Methylbutanal 苹果香 1.50 8.83 3.27 − 9.88 2 2-甲基丁醛2-Methylbutanal 烘烤香 1.10 12.80 5.63 − 5.26 3 戊醛Pentanal − 12.00 − − 0.12 0.11 4 顺-3-己烯醛(Z)-3-Hexenal 青香 0.20 − − 35.24 − 5 己醛Hexanal 青草 5.00 11.31 78.56 57.80 98.70 6 反式-2-己烯醛(E)-2-hexenal 苹果,青叶香 110.00 3.07 4.76 7.06 3.98 7 苯甲醛Benzaldehyde 樱桃,杏仁 751.00 1.96 10.43 12.32 8.57 8 辛醛Octanal 橙皮 3.40 1.30 1.99 6.12 1.70 9 苯乙醛Benzeneacetaldehyde 蜂蜜,玫瑰花香 4.00 3.85 6.66 − 12.01 10 反-2-辛烯醛(E)-2-Octenal 青叶香,坚果香,脂香 3.00 0.44 1.34 1.58 − 11 壬醛Nonanal 脂香,柑橘,青叶香 1.00 100.00 89.91 100.00 100.00 12 反式-2-壬烯醛(E)-2-Nonenal 青香、黄瓜、柑橘 1.10 0.77 3.67 2.50 4.30 13 癸醛Decanal 薄荷,青叶 70.00 0.58 0.47 0.82 0.53 醇类 5种 4种 2种 3种 14 3-甲基丁醇3-Methylbutanol − 2800.00 0.01 − − − 15 顺式-3-己烯醇 (Z)-3-Hexenol 青叶香气 13.00 6.44 8.15 − − 16 反式-2-己烯醇 (E)-2-Hexenol 青香、果香、蔬菜香和草香 100.00 38.80 32.69 2.51 18.33 17 1-正己醇1-Hexanol 青草味 500.00 0.78 0.41 0.15 1.14 18 1-壬醇1-Nonanol 花香、果香 18.00 0.49 0.14 − 0.33 酯类 4种 3种 0种 0种 19 乙酸己酯Hexyl acetate 水果、青香、苹果 17.00 21.95 14.84 − − 20 苯甲酸甲酯Methyl benzoate 花香、蜂蜜 73.00 0.29 0.13 − − 21 苯甲酸乙酯Ethyl benzoate 花香 55.56 0.39 − − − 22 (E)-己-2-烯基丁酸酯(E)-2-Hexenyl butanoate − 320.00 1.33 0.77 − − 萜类 5种 3种 3种 5种 23 柠檬烯Limonene 柑橘,薄荷 10.00 0.60 0.53 0.11 0.77 24 芳樟醇Linalool 花香,薰衣草 1.00 75.12 100.00 51.87 76.87 25 β−石竹烯β−Caryophyllene 辛香、木香和萜烯的香气 500.00 0.10 − − − 26 α−紫罗兰酮α−Ionone 木香,紫罗兰香 0.60 2.03 − − 5.08 27 香叶基丙酮Geranyl acetone 花果香 60.00 − − − 0.50 28 β−紫罗兰酮β−Ionone 紫罗兰香气 70.00 0.24 1.96 0.17 2.45 其它 2种 3种 2种 3种 29 2,3-丁二酮2,3-Butanedione − 6.00 − − − 0.51 30 1-辛烯-3-酮1-Octen-3-one 具有清新泥土、蘑菇、蔬菜香气 10.00 − 0.65 − − 31 6-甲基-5-庚烯-2-酮6-Methyl-5-heptene-2-one 水果香气及柠檬草香气 68.00 0.20 0.19 0.02 0.82 32 2-戊基呋喃2-Pentylfuran 清香、青豆味、金属味 6.00 1.96 0.58 0.22 1.17 注: “−”表示该成分香气描述未被查询到或该物质ROAV<0.1;香气描述通过“Perflavory Information System”查询。 -
[1] 王云香, 李文生, 常虹, 等. 高浓度CO2处理对樱桃果实贮藏品质的影响[J]. 北方园艺,2021(12):101−110. [WANG Yunxiang, LI Wensheng, CHANG Hong, et al. Effects of high CO2 treatment on sweet cherry fruit quality during storage[J]. Northern Horticulture,2021(12):101−110. [2] 邱珊莲, 张少平, 林宝妹, 等. 不同成熟期番石榴果实香气成分变化[J]. 江苏农业科学,2021,49(13):162−169. [QIU Shanlian, ZHANG Shaoping, LIN Baomei, et al. Changes of aroma components of guava fruits at different maturity stages[J]. Jiangsu Agricultural Sciences,2021,49(13):162−169. [3] DIXON J, HEWETT E W. Factors affecting apple aroma/flavour volatile concentration: A review[J]. New Zealand Journal of Crop and Horticultural Science,2000,28(3):155−173. doi: 10.1080/01140671.2000.9514136
[4] URRUTY L, GIRAUDEL J L, LEK S, et al. Assessment of strawberry aroma through SPME/GC and ANN methods classification and discrimination of varieties[J]. Journal of Agricultural and Food Chemistry,2002,50(11):3129−3136. doi: 10.1021/jf0116799
[5] HERIANUS Z S A, LALEL J D, SOON C B. Aroma volatiles production during fruit ripening of ‘Kensington Pride’ mango[J]. Postharvest Biology and Technology,2003,27:323−336. doi: 10.1016/S0925-5214(02)00117-5
[6] MAUL F, SARGENT S A, SIMS C A, et al. Tomato flavor and aroma quality as affected by storage temperature[J]. Journal of Food Science,2000,65:1228−1237. doi: 10.1111/j.1365-2621.2000.tb10270.x
[7] HULTIN H O, PROCTOR B E. Changes in some volatile constituents of the banana during ripening, storage and processing[J]. Food Technol,1961,15:440−445.
[8] MATTHEIS J, BECHANAN D, FELLMAN J, et al. Identification of headspace volatile compounds from 'Bing'sweet cherry fruit[J]. Phytochemistry,1992,31(3):775−777. doi: 10.1016/0031-9422(92)80012-4
[9] LEGUA P, DOMENECH A, MARTINES J, et al. Bioactive and volatile compounds in sweet cherry cultivars[J]. Journal of Food and Nutrition Research,2017,5(11):844−851. doi: 10.12691/jfnr-5-11-8
[10] GIRARD B, KOPP T G. Physicochemical characteristics of selected sweet cherry cultivars[J]. Journal of Agricultural & Food Chemistry,1998,46(2):471−476.
[11] 赵静, 王帅帅, 张岩, 等. '红颜'草莓果实成熟过程中香气成分的变化[J]. 安徽农业大学学报,2019(2):330−336. [ZHAO Jing, WANG Shuaishuai, ZHANG Yan, et al. Changes of aromatic components during 'Benihoppe' strawberry fruit development and maturation[J]. Journal of Anhui Agricultural University,2019(2):330−336. [12] 王玲, 尹克林. '达赛莱克特'草莓果实发育成熟过程中香气物质的变化及其特征成分的确定[J]. 果树学报,2018,35(4):43−51. [WANG Ling, YIN Kelin. Changes in aroma of 'Darselect' strawberry during development and characterization of the key aroma[J]. Journal of Fruit Science,2018,35(4):43−51. [13] AUBERT C, CHALOT G. Chemical composition, bioactive compounds, and volatiles of six table grape varieties (Vitis vinifera L. ).[J]. Food Chemistry,2017,240(Feb.1):524−533.
[14] CARLOMAGNO A, SCHUBERT A, FERRANDINO A. Screening and evolution of volatile compounds during ripening of ‘Nebbiolo’, ‘Dolcetto’ and ‘Barber’ (Vitis vinifera L. ) neutral grapes by SBSE-GC/MS[J]. European Food Research and Technology,2016,242:1221−1233. doi: 10.1007/s00217-015-2626-4
[15] 薛晓敏, 韩雪平, 王金政. '金凯特'杏果实发育期间香气成分分析[J]. 山东农业科学,2016,48(11):53−53. [XUE Xiaomin, HAN Xueping, WANG Jinzheng. Analysis of aromatic components in different developmental periods of apricot cultivar 'Jinkaite'[J]. Shandong Agricultural Sciences,2016,48(11):53−53. [16] 章秋平, 刘威生. 杏果实香气物质的研究进展[J]. 北方果树,2020(3):1−4. [ZHANG Qiuping, LIU Weisheng. Advances in aroma of apricot fruit[J]. Northern Fruits,2020(3):1−4. [17] 刘婉君, 张莹, 张玉星, 等. 18个品种授粉‘鸭梨’果实品质和香气成分分析与评价[J/OL]. 食品科学: 1−16[2021-09-03]. http://kns.cnki.net/kcms/detail/11.2206.TS.20210406.1057.004.html. LIU Wanjun, ZHANG Ying, ZHANG Yuxing, et al. Analysis and evaluation of fruit quality and aroma componends of 'Yali' pear (Pyrus bretschneideri Reid.) pollinated by eighteen pollinizees[J/OL]. Food Science: 1−16[2021-09-03]. http://kns.cnki.net/kcms/detail/11.2206.TS.20210406.1057.004.html.
[18] 张军, 李靖靖. 梨果实香气物质的研究综述[J]. 中州大学学报,2020,37(3):123−128. [ZHANG Jun, LI Jingjing. Research review on the aroma of pear fruit[J]. Journal of Zhongzhou University,2020,37(3):123−128. [19] 张序, 李延菊, 孙庆田, 等. 不同品种甜樱桃果实芳香成分的GC-MS分析[J]. 果树学报,2014,31(S1):134−138. [ZHANG Xu, LI Yanju, SUN Qingtian, et al. GC-MS analysis of aroma components in sweet cherry (Prunus avium) cultivars[J]. Journal of Fruit Science,2014,31(S1):134−138. [20] 里奥·范海默. 化合物嗅觉阈值汇编[M]. 第二版. 北京: 科学出版社, 2018: 60−240. GEMERT L J. Compilations of odour threshold values in air, water and other media[M]. Beijing: Science Press, 2018: 60−240.
[21] 马士成, 王梦琪, 刘春梅, 等. 六堡茶挥发性成分中关键香气成分分析[J]. 食品科学,2020,41(20):191−197. [MA Shicheng, WANG Mengqi, LIU Chunmei, et al. Analysis of volatile composition and key aroma compounds of liupao tea[J]. Food Science,2020,41(20):191−197. doi: 10.7506/spkx1002-6630-20190920-252 [22] 邱爽, 唐飞, 刘畅, 等. 气相色谱-质谱联机结合感官分析共建樱桃香气关联网络[J]. 食品科学,2021,42(16):209−217. [QIU Shuang, TANG Fei, LIU Chang, et al. Aroma networking of cherries based on gas chromatography-mass spectrometric data and sensory evaluat[J]. Food Science,2021,42(16):209−217. [23] WEN Y Q, HE F, ZHU B Q, et al. Free and glycosidically bound aroma compounds in cherry (Prunus avium L.)[J]. Food Chemistry,2014,152:29−36. doi: 10.1016/j.foodchem.2013.11.092
[24] SUN S Y, JIANG W G, ZHAO Y P, et al. Characterization of the aroma-active compounds in five sweet cherry cultivars grown in Yantai (China)[J]. Flavour and Fragrance Journal,2010,25(4):206−213. doi: 10.1002/ffj.1994
[25] 张序, 姜远茂, 彭福田, 等. ‘红灯’甜樱桃果实发育进程中香气成分的组成及其变化[J]. 中国农业科学,2007(6):1222−1228. [ZHANG Xu, JIANG Yuanmao, PENG Futian, et al. Changes of aroma components in ‘Hongdeng’ sweet cherry during fruit development[J]. Scientia Agricultura Sinica,2007(6):1222−1228. doi: 10.3321/j.issn:0578-1752.2007.06.018 [26] 陈美霞, 陈学森, 周杰, 等. 杏果实不同发育阶段的香味组分及其变化[J]. 中国农业科学,2005,38(6):1244−1249. [CHEN Meixia, CHEN Xuesen, ZHOU Jie, et al. Changes of aroma constituents in apricot during fruit development[J]. Scientia Agricultura Sinica,2005,38(6):1244−1249. doi: 10.3321/j.issn:0578-1752.2005.06.026 [27] ENGEL K, RAMMING D, FLATH R, et al. Investigation of volatile constituents in nectarine. 2. changes in aroma composition during nectarine maturation[J]. Journal of Agricultural and Food Chemistry,1988,36:1003−1006. doi: 10.1021/jf00083a024
[28] CHAOMAN G, HORVAT R, FORBUS W. Physical and chemical changes during the maturation of peaches (cv. Majestic)[J]. Journal of Agricultural and Food Chemistry,1991,39:867−870. doi: 10.1021/jf00005a010
[29] SERRADILLA M J, MARTIN A, RUIZ M S, et al. Physicochemical and sensorial characterisation of four sweet cherry cultivars grown in Jerte Valley (Spain)[J]. Food Chemistry,2012,133(4):1551−1559. doi: 10.1016/j.foodchem.2012.02.048
[30] 张鹏, 王云舒, 李江阔, 等. 不同气调方式对甜樱桃贮后货架期芳香物质的影响[J]. 食品与发酵工业,2016(6):173−181. [ZHANG Peng, WANG Yunshu, LI Jiangkuo, et al. Effect of different atmosphere mode on aroma components of cherry during shelf life after storage[J]. Food and Fermentation Industries,2016(6):173−181. [31] 刘纯友, 江素珍, 冯笑, 等. HS-SPME-GC-MS测定三种类型百香果果实挥发性风味成分[J]. 食品工业科技,2021,42(11):255−262. [LIU Chunyou, JIANG Suzhen, FENG Xiao, et al. Study on volatile flavor compounds from three types of passion fruit using headspace solid phase micro-extraction gas chromatography mass spectrometry[J]. Science and Technology of Food Industry,2021,42(11):255−262. [32] 秦玲, 蔡爱军, 张志雯, 等. 两种甜樱桃果实挥发性成分的HS-SPME-GC/MS分析[J]. 质谱学报,2010,31(4):228−234. [QIN Ling, CAI Aijun, ZHANG Zhiwen, et al. Analysis of volatile components in sweet cherry fruit by HS-SPME-GC/MS[J]. Journal of Chinese Mass Spectrometry Society,2010,31(4):228−234. [33] SONG H, LIU J. GC-O-MS technique and its applications in food flavor analysis[J]. Food Research International,2018,114:187−198. doi: 10.1016/j.foodres.2018.07.037
[34] 吴林, 张强, 臧慧明, 等. 气味活度值法评价蓝莓果皮、果肉、果汁挥发性香气成分[J]. 食品工业科技,2020,41(1):195−200. [WU Lin, ZHANG Qiang, ZANG Huiming, et al. Evaluation of volatile aroma components in blueberry peel, pulp and juice by odor activity value[J]. Science and Technology of Food Industry,2020,41(1):195−200. [35] 杨剀舟, 魏征, 王佳雅, 等. 顶空固相微萃取-气质分析油茶籽油挥发性成分方法优化[J]. 粮油食品科技,2021,29(4):108−115. [YANG Kaizhou, WEI Zheng, WANG Jiaya, et al. Optimization of HS-SPME-GC/MS analysis of volatile components in camellia seed oil[J]. Science and Technology of Cereals, Oils and Foods,2021,29(4):108−115.