• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
段旭,冉军舰,孙俊良,等. 甘薯渣多糖的提取工艺优化、结构鉴定及其功能活性研究[J]. 食品工业科技,2022,43(8):228−237. doi: 10.13386/j.issn1002-0306.2021080072.
引用本文: 段旭,冉军舰,孙俊良,等. 甘薯渣多糖的提取工艺优化、结构鉴定及其功能活性研究[J]. 食品工业科技,2022,43(8):228−237. doi: 10.13386/j.issn1002-0306.2021080072.
DUAN Xu, RAN Junjian, SUN Junliang, et al. Study on Extraction Process Optimization, Structure Identification and Functional Activity of Polysaccharide from Sweet Potato Residue[J]. Science and Technology of Food Industry, 2022, 43(8): 228−237. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080072.
Citation: DUAN Xu, RAN Junjian, SUN Junliang, et al. Study on Extraction Process Optimization, Structure Identification and Functional Activity of Polysaccharide from Sweet Potato Residue[J]. Science and Technology of Food Industry, 2022, 43(8): 228−237. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080072.

甘薯渣多糖的提取工艺优化、结构鉴定及其功能活性研究

Study on Extraction Process Optimization, Structure Identification and Functional Activity of Polysaccharide from Sweet Potato Residue

  • 摘要: 本研究采用超声波辅助热水浸提法提取甘薯渣粗多糖,经单因素实验和响应面优化提取工艺参数,并通过酶法脱蛋白、H2O2法脱色和Superose 12 10/300 GL凝胶柱对多糖进行分离纯化,得到甘薯渣多糖。采用紫外光谱法、红外光谱法和高效液相色谱法对甘薯渣多糖进行结构鉴定,在此基础上进一步对甘薯渣多糖进行抗氧化活性测定以及体外降血糖能力测定。结果表明,甘薯渣多糖的最佳提取工艺条件为提取温度70 ℃、超声功率264 W、提取时间56 min、料液比1:17 g/mL,在此条件下多糖得率为5.053%。经红外鉴定表明该多糖为α-吡喃葡萄糖,高效液相测定表明其由9.46%甘露糖、4.28%鼠李糖、11.72%葡萄糖醛酸、62.37%葡萄糖和10.58%木糖组成。测定其体外抗氧化活性发现,甘薯渣多糖清除DPPH·、·OH、超氧阴离子的IC50值分别为3.089、4.879、5.832 mg/mL,对其体外降血糖测定发现,甘薯渣多糖抑制α-淀粉酶以及α-葡萄糖苷酶的IC50值分别为7.674、18.961 mg/mL。综上,甘薯渣多糖具有良好的抗氧化、降血糖等功能活性。上述研究结果为甘薯渣多糖的纯化、功能活性分析及其综合利用提供了数据参考。

     

    Abstract: In this study, ultrasonic assisted hot water extraction was used to extract crude polysaccharides from sweet potato residue. Single factor experiments and response surface optimization were used to extract the technological parameters. The polysaccharides from sweet potato residue were obtained by enzymatic deproteinization, H2O2 decolorization and Superose 12 10/300 GL gel column. The structure of sweet potato residue polysaccharide was identified by ultraviolet spectroscopy, infrared spectroscopy and HPLC. On this basis, the antioxidant activity and hypoglycemic ability of sweet potato residue polysaccharide were determined in vitro. The experimental results showed that the optimum extraction conditions of polysaccharide from sweet potato residue were extraction temperature 70 ℃, ultrasonic power 264 W, extraction time 56 min and solid-liquid ratio 1:17 g/mL. under these conditions, the yield of polysaccharide was 5.053%. Infrared identification showed that the polysaccharide was α-glucopyranose was determined by HPLC. It was composed of 9.46% mannose, 4.28% rhamnose, 11.72% glucuronic acid, 62.37% glucose and 10.58% xylose. The IC50 values of DPPH·, ·OH and superoxide anion scavenged by sweet potato residue polysaccharide were 3.089, 4.879, 5.832 mg/mL respectively, the IC50 values of α-amylase and α-glucosidase were 7.674 and 18.961 mg/mL, respectively. In summary, the sweet potato residue polysaccharide had good antioxidant and hypoglycemic activities. The above results would provide data reference for the purification, functional activity analysis and comprehensive utilization of sweet potato residue polysaccharide.

     

/

返回文章
返回