• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

鱼内脏蛋白水解物的制备及其生理活性研究进展

黄苹, 袁美兰, 赵利, 江勇, 白春清, 陈丽丽

黄苹,袁美兰,赵利,等. 鱼内脏蛋白水解物的制备及其生理活性研究进展[J]. 食品工业科技,2022,43(18):408−415. doi: 10.13386/j.issn1002-0306.2021070205.
引用本文: 黄苹,袁美兰,赵利,等. 鱼内脏蛋白水解物的制备及其生理活性研究进展[J]. 食品工业科技,2022,43(18):408−415. doi: 10.13386/j.issn1002-0306.2021070205.
HUANG Ping, YUAN Meilan, ZHAO Li, et al. Progress of Preparation and Physiological Activity of Fish Visceral Protein Hydrolysates[J]. Science and Technology of Food Industry, 2022, 43(18): 408−415. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070205.
Citation: HUANG Ping, YUAN Meilan, ZHAO Li, et al. Progress of Preparation and Physiological Activity of Fish Visceral Protein Hydrolysates[J]. Science and Technology of Food Industry, 2022, 43(18): 408−415. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070205.

鱼内脏蛋白水解物的制备及其生理活性研究进展

基金项目: 江西省科技厅科技支撑重大项目(20152ACF60008);江西省教育厅科技项目(GJJ150820);江西省现代农业产业技术体系建设专项资金资助(赣财教指2013-258);国家农业科技成果转化项目(国科办农[2014]42号);江西省水产品加工及安全控制工程研究中心开放基金项目(KFJJ2101,KFJJ2102)。
详细信息
    作者简介:

    黄苹(1997−),女,硕士研究生,研究方向:水产品加工及资源综合利用,E-mail:2454493200@qq.com

    通讯作者:

    袁美兰(1978−),女,博士,副教授,研究方向:食物资源开发及综合利用,E-mail:46733390@qq.com

  • 中图分类号: TS254

Progress of Preparation and Physiological Activity of Fish Visceral Protein Hydrolysates

  • 摘要: 鱼内脏是鱼类加工的主要副产物之一,通常被认为是低价值资源,绝大部分被丢弃。鱼内脏含有较高含量的蛋白质,水解后得到的蛋白水解物(FPH)具有抗氧化、降血糖、抗炎、降血压等功能活性,可作为潜在的功能性成分和食品添加剂。本文对鱼内脏蛋白水解物的制备工艺和生理活性研究现状进行了综述,以期为鱼内脏的深度加工利用提供参考。
    Abstract: Fish viscera are one of the main by-products of fish processing, and often considered a low value resource, so they are mostly discarded. Fish viscera contain high levels of protein, and fish protein hydrolysates (FPH) have functional activities such as antioxidant, hypoglycemic, anti-inflammatory, and blood pressure reduction, and can be used as a potential functional ingredient and food additive. This paper reviews the research status of the preparation process and physiological activity of the hydrolysates of fish viscera protein in order to provide reference for the deep processing and utilization of fish viscera.
  • 2020年,我国水产品总产量为6549.02万吨,其中鱼类总产量为2761.36万吨,在水产品中占比42.2%,同比增长了1.95%[1]。在鱼类加工中,会产生约占生鱼质量40%~55%的副产物(包括鱼头、鱼皮、鱼骨、鱼鳞和内脏)[2],但是约有50%的副产物被直接作为废物丢弃处理,仅有30%被初步加工为低值的动物饲料、肥料或发酵鱼露、鱼粉。其中鱼内脏含有大量的蛋白类物质且在副产物中占有较大比重(约15%~30%),但其难保存、易腐烂及高值化利用程度较低,造成了不必要的浪费和污染[3]

    近年来,从鱼及其副产物中制备蛋白水解物成为研究热点。鱼内脏是蛋白质和omega-3多不饱和脂肪酸的重要来源[4],可用作生产蛋白质水解物的原料。鱼蛋白水解物(FPH)是鱼蛋白酶水解后转化成的多肽产物,具有抗凝血、抗菌、抑制血管紧张素转换酶和抗氧化等活性,可以被用于治疗动脉粥样硬化、癌症、冠心病和心血管类疾病[5]。目前,国内外对于鱼内脏生产具有生理活性的蛋白肽的研究较为活跃。例如从大西洋鲭鱼(Scomber scombrus)内脏[6]的蛋白水解物中纯化抗菌水解物,用沙丁鱼副产物(鱼内脏)[7]、露斯塔野鲮(Labeo rohita)内脏[8]、虹鳟鱼内脏[9]、鲤鱼Catla(Catla catla)内脏[10]制备抗氧化蛋白水解物。但据已有文献可知,鱼内脏蛋白水解物的生物活性尚未像牛奶蛋白肽和植物蛋白肽那样得到广泛深入研究,在临床应用方面也尚未受到关注,目前多数研究还是停留在对制备工艺的不断重复上,只有较少的研究评估了鱼内脏蛋白水解物作为功能性食品的潜在生物活性。

    鱼内脏蛋白水解物是生物活性物质,是生产功能食品和营养补充食品的原料来源。本文对目前国内外鱼内脏蛋白水解物的制备工艺和生理活性研究现状进行了综述,并对鱼内脏蛋白水解物的综合加工利用前景进行展望,旨在为鱼内脏蛋白水解物的进一步开发利用提供参考,也为水产品产业的转型发展带来更多机遇。

    鱼内脏可作为生产蛋白质的良好来源[11],其用途十分广泛,可加工为细菌素[12]、生物降解膜[13]、蛋白胨[14],还可用作蛋白酶源[15-16]。作为鱼类加工的主要副产物,鱼内脏约占鱼体质量的10%[17],其成分比较复杂,主要包括蛋白质、水分、脂肪、灰分等,不同的鱼内脏,其基本营养成分含量有所差异,表1总结了几种不同鱼内脏的基本成分构成。

    表  1  不同种类鱼内脏的基本成分构成
    Table  1.  Basic nutritional contents of fish viscera of different species
    内脏种类水分粗脂肪粗蛋白灰分参考文献
    大黄鱼59.9429.3411.141.04周纷[18]
    鲈鱼4835121.1Munekata[19]
    草鱼28.861.78.60.6郭休玉[20]
    斑点叉尾鮰80.065.3411.900.91杨晓军[21]
    鳡鱼68.38钟清梅[22]
    鲤鱼45.2852.86张金哲[23]
    章鱼75.82.6162.6张秀娟[24]
    鲍鱼72.713.575.732.29苏永昌[25]
    沙丁鱼77.4613.0015.761.90Kechaouetal [26]
    金枪鱼75.7311.765.043.12Salwanee[27]
    鳕鱼60.002.0014.904.40Šlizyteetal[28]
    鲣鱼76.695.1318.651.26白冬[29]
    注:“−”表示未测定;表2~表3同。
    下载: 导出CSV 
    | 显示表格

    鱼内脏蛋白可以通过酸、碱、酶水解或加热的方法转化为低分子质量肽或游离氨基酸,是提高鱼内脏蛋白生物活性的常见方法[30-31]。而在水解之前需对样品进行一系列的预处理工艺,以防止蛋白水解液发生氧化、变色及产生臭味和有毒物质。预处理一般包括去除鱼内脏的胆囊、鱼鳔等物质,然后对样品进行绞碎、脱脂、灭酶、过滤、热处理等操作。蛋白水解后获得不同分子量的复杂的小肽段,一般使用超滤或纳滤、微滤、离子交换色谱等方法对肽组分进行初步分离,得到具有多种生理活性的蛋白肽。图1总结了鱼内脏蛋白水解物的制备工艺步骤。

    图  1  鱼内脏蛋白水解物制备流程
    Figure  1.  Preparation process of fish viscera protein hydrolysate

    蛋白水解物的制备方法分为化学法(包括酸水解、碱水解和热水解)和生物法(包括自溶、微生物发酵和酶解法)[32]。化学法适用于非特定性的水解,其主要优势是操作简单且成本低廉,因此在工业上的应用较为广泛,但反应过程难以控制,且会导致营养物质的损失和水解产物的生物活性较低。酶解法由于具有条件温和、易于控制、无副作用且产物营养价值较高等优点,因此,是接受程度最高、最适合用于生产FPH的方法[33]

    近年来,越来越多的学者采用酶法水解鱼内脏蛋白制备活性肽。表2详细总结了国内外不同鱼内脏制备蛋白水解物的工艺条件及部分产物的生理活性。在国内,孙一玮等[34]以复合酶酶解鳕鱼内脏得到氨基酸含量为16.33 mg/mL的鱼内脏蛋白水解物。林慧敏等[35]以脱脂鮟鱇鱼肝为原料制备的抗氧化肽,水解度为69.52%,羟自由基清除能力76.74%。褚晨艳等[36]用胰蛋白酶对草鱼内脏进行水解,通过单因素实验和正交试验优化水解条件,最佳条件下水解度可达37.87%。李致瑜等[37]用Alcalase蛋白酶酶解大黄鱼内脏制备抗氧化肽,在最佳工艺下此内脏多肽具有较高的抗氧化活性,水解度为30.66%。在国外,Gómez等[43]确定了罗非鱼内脏制备蛋白水解物的最佳酶解时间、温度以及pH等工艺条件,水解度为42.5%。Motamedzadegan等[44]用中性蛋白酶水解黄鳍金枪鱼内脏,其水解度相较其他酶制备蛋白水解物,水解度较低为30%。以上研究都以水解度为指标,确定了不同鱼内脏的水解条件,从中可知,不同条件下的水解度是不同的,这取决于所选择的酶、底物以及温度、酸碱度、酶解时间等,其中蛋白酶的特异性影响分子量和疏水性,可以用来系统地从N末端或C末端清除氨基酸,从而影响蛋白质的水解。较长的水解时间产生分子量较小的蛋白质和肽,在蛋白质表面产生更多暴露的可电离和极性基团,使其与水形成氢键的能力提高,则溶解性高,具有较高水解度[45]。温度和酸碱度都会对酶的反应动力学产生很大影响,极端的温度和酸碱度会使酶变性而失活,从而导致水解程度降低。研究发现,一般碱性条件下的底物蛋白和水解物蛋白的可溶性肽含量高于酸性条件下的可溶性肽含量[46];pH接近中性的酶,如中性蛋白酶、碱性蛋白酶和风味酶应用更加广泛。综合文献来看,使用碱性蛋白酶、延长酶解时间及在中性或碱性条件下,鱼内脏蛋白水解物的水解度更高,且大多数小分子肽段具有更高的抗氧化活性,从而提高鱼内脏蛋白水解物的生理活性。此外,酶解法受多种因素的调控,它对环境污染较小,是目前具有发展前景的一种技术。

    表  2  鱼内脏水解制备蛋白肽的工艺
    Table  2.  Preparation of protein peptides from fish viscera by hydrolysis
    种类pH料液比添加量温度(℃)时间(h)生理活性水解度(%)参考文献
    鳕鱼内脏7.51:3.19
    (m:m)
    复合酶(胰蛋白酶:
    风味蛋白酶=2:1)
    2.93%45.526 h氨基酸含量16.33 mg/mL孙一玮等[34]
    鮟鱇鱼肝8.5碱性蛋白酶3000 U/g55669.52林慧敏等[35]
    草鱼内脏8.040胰蛋白酶25 U/mL35337.87褚晨艳等[36]
    大黄鱼内脏9.08:100 (g:mL)Alcalase蛋白酶4.26%623.730.66李致瑜等[37]
    海参内脏8.0碱性蛋白酶4%553.0羟基自由基清除率63.75%梁杰等[38]
    鲟鱼肝脏10.01:10(g:mL)碱性蛋白酶10540 U/g458.681.7王靖麟等[39]
    鲟鱼鱼肠
    1:20胃蛋白酶3200 U/g351.5

    羟基自由基85.80%、
    ·OH清除率为78.06%
    饶承冬[40]
    斑点叉尾鮰内脏7.52:1 (mL:g)木瓜蛋白酶553ACE抑制率为72.34%杨晓军等[21]
    大西洋鲑鱼内脏9.00.7:50 (g:mL)内源蛋白酶0.7 mL/50 mL357 h总抗氧化活性为258.29 U15.00陈琳等[41]
    鳕鱼鱼鳔7.21复合蛋白酶200 U/mL58.566 DPPH清除能力61.1%李娜等[42]
    罗非鱼内脏10.08 g蛋白/L碱性蛋白酶0.306 U/g6042.5Gómez等[43]
    黄鳍金枪鱼内脏-中性蛋白酶39.61 AU/kg532.3530Motamedzadegan等[44]
    下载: 导出CSV 
    | 显示表格
    表  3  鱼内脏蛋白酶解物中活性肽的氨基酸序列
    Table  3.  Amino acid sequences of active peptides in the hydrolysates of fish viscera
    内脏种类大黄鱼内脏
    (福建)[47](g/100 g)
    鲢鱼内脏
    (g/100 g)[48]
    金枪鱼内脏[49]
    (g/100 g)
    青鱼内脏[50]
    (g/100 g)
    鲟鱼内脏[50]
    (g/100 g)
    草鱼内脏[10]
    (g/100 g)
    T1T2T3T4
    天门冬氨酸Asn4.773.309.559.226.828.668.38.50
    丝氨酸Ser2.765.071.394.152.576.814.464.24.34
    谷氨酸Glu9.262.4819.1313.010.0616.1313.715.01
    甘氨酸Gly3.6910.2314.9514.212.235.878.455.410.99
    组氨酸His3.842.684.632.494.198.452.382.082.06
    精氨酸Arg3.076.822.560.622.938.819.637.2810.82
    苏氨酸Thr5.185.776.314.150.585.94.673.54.02
    丙氨酸Ala6.574.931.843.293.402.235.296.37.04
    脯氨酸Pro6.4712.6615.5313.3411.104.473.466.24
    半胱氨酸Cys0.774.412.384.6521.730.50.23
    酪氨酸Phe3.353.765.082.892.703.853.882.343.53
    缬氨酸Val5.351.320.721.050.668.935.255.794.79
    蛋氨酸Met3.066.172.444.112.501.483.2810.32.02
    赖氨酸Lys7.278.302.306.153.301.876.556.87.07
    异亮氨酸Ile5.456.142.834.354.316.933.953.83.60
    亮氨酸Leu9.6110.254.717.466.777.77.77.137.17
    苯丙氨酸Phe6.085.713.674.854.163.854.283.143.53
    色氨酸Trp4.61
    总量100.00
    必需氨基酸40.8453.1630.1735.2329.40
    鲜味氨基酸46.23
    芳香族氨基酸9.4912.8010.6811.9930.08
    疏水性氨基酸42.1657.4146.6952.6745.13
    给质子氨基酸40.96
    注:T1表示胃蛋白酶提取制备的水解物;T2表示木瓜蛋白酶提取制备的水解物;T3表示酸碱处理的水解物;T4表示碱碱处理的水解物。
    下载: 导出CSV 
    | 显示表格

    表2可以看出,鱼内脏蛋白水解物的相关研究比较多,虽然它们有潜在的生理功效,但大多数关于鱼内脏蛋白水解生物活性的实验都是在体外进行的,尚未进行体内研究和临床证实,导致其工业化制备和应用也尚未实现。如果能进一步完善相关研究,并充分开发利用其生理活性物质,则可为淡水鱼加工副产物的合理利用提供方向,提高水产行业的经济效益。

    蛋白及多肽的理化特性和生理活性与它的氨基酸组成有着直接或间接的关系。表3总结了部分鱼内脏蛋白肽的氨基酸组成。可以看出因鱼类种类不同,氨基酸组成有较大差异,且同一种鱼内脏,不同水解处理条件得到的内脏蛋白水解物的氨基酸组成也是不一样的。其中大多数鱼内脏含有较高的谷氨酸、甘氨酸、精氨酸、脯氨酸、亮氨酸。

    自由基是通过身体内的正常生理反应产生的物质,但过量的自由基生成易导致机体细胞或组织损伤。天然蛋白水解物在抑制氧化和清除自由基方面起着重要作用,可防止衰老、抗高血压、抗癌症、心血管疾病等慢性病,增强机体免疫力[51]

    目前,研究表明鱼类加工副产物的蛋白水解物是潜在的食品抗氧化剂的天然来源,许多抗氧化肽已在鱼内脏蛋白水解物中被鉴定出来。Ganesh等[52]用胃蛋白酶和胰蛋白酶复合水解乌鲳鱼内脏,经分离纯化得到分子量为701.9 Da,结构为Ala-Met-Thr-Gly-Leu-Glu-Ala的高抗氧化性肽段,在1 mg/mL浓度下,DPPH达到54%、金属螯合能力达到78.6%,随着酶解液浓度的增加,还原力也加强。Hassan等[48]研究了用化学法和酶法制备得到的鲢鱼内脏蛋白水解液的喷雾干燥产物的抗氧化性能。结果表明,胃蛋白酶和木瓜蛋白酶制备的鲢鱼内脏蛋白水解液具有良好的抗氧化性能和综合品质。Je等[53]用不同蛋白酶对金枪鱼肝脏进行酶解得到的蛋白水解物,其还原力、DPPH清除能力等都较高,具有较好的抗氧化活性。李娜等[42]对鳕鱼鱼鳔用六种酶进行酶解,其产物DPPH清除能力达到61.1%,同时有较好的亚铁离子螯合能力。Bougatef等[54]对沙丁鱼内脏蛋白水解产物中的新型抗氧化肽进行纯化与鉴定,分离出七个抗氧化剂肽,其结构分别为Leu-His-Tyr、Leu-Ala-Arg-Leu、Gly-Gly-Glu、Gly-Ala-His、Gly-Ala-Trp-Ala、Pro-His-Tyr-Leu和Gly-Ala -Leu-Ala-Ala-His,第一个肽表现出最高的DPPH自由基清除活性,达63%±1.57%。研究表明[55],低分子量的肽段抗氧化活性更高。

    人体肾素-血管紧张素生化系统(RAS)和激肽释放酶-激酶系统(KKS)对人体内的血压进行调节。RAS是升压调节系统,肾素先将血管紧张素原转化为血管紧张素I,再通过血管紧张素转换酶(ACE)转化为血管紧张素II,导致血压升高(高血压)[56]。KKS能使毛细血管舒张,增加通透性,使血压下降,是降压调节。ACE抑制剂作用于抗高血压治疗靶点,对于高血压人群,如果服用ACE抑制剂,则降低血管紧张素Ⅱ的生成,血压下降,从而达到治疗高血压的目的[57]。杨晓军等[21]以斑点叉尾鮰内脏为原料,用木瓜蛋白酶进行水解,制备血管紧张素转化酶抑制产物,酶解产物的ACE抑制率为72.34%。Bougatef等[58]研究了不同蛋白酶处理的沙丁鱼副产物(鱼头和鱼内脏)所制的蛋白水解物的血管紧张素转换酶抑制活性,结果表明所有水解产物对血管紧张素转换酶都有抑制活性,而碱性蛋白酶处理内脏产生的水解产物具有最高的抑制活性(63.2%±1.5%)。Je等[53]使用不同的酶对金枪鱼肝进行水解,结果表明所有水解产物都具有ACE抑制特性。目前,大多数具有ACE抑制活性的蛋白肽都是化学合成的,具有一定的副作用[59],因此,制备天然的具有ACE抑制活性的蛋白水解物是值得研究的热点。

    抗菌肽(AMPs)是由10~60个氨基酸组成的具有生物活性的小分子多肽,已发现植物、动物和微生物等多种来源[60]。其中鱼蛋白水解物中的抗菌肽,不仅能消除入侵的微生物,还能够调节炎症反应。LEAP-2和Hepcidins(铁调素)都是由鱼肝脏合成的抗菌多肽[61]。有报道指出鱼蛋白水解物对枯草芽孢杆菌、金黄色葡萄球菌、大肠杆菌和沙门氏菌都有一定的抑制作用[62]。目前用鱼内脏提取抗菌肽的研究相对较少,Pezeshk等[49]用鱼精蛋白复合酶对黄鳍金枪鱼内脏进行水解,获得的水解物通过超滤分离得到四个不同分子量的肽段,其中,最低分子量即<3 kDa的抗菌肽段对革兰氏阳性(李斯特菌和葡萄球菌)和革兰氏阴性(大肠杆菌和假单胞菌)致病菌和与鱼腐败相关的微生物具有最高的抑菌率,对DPPH和ABTS自由基具有清除活性,且铁离子还原能力较强。这些结果表明,从黄鳍金枪鱼内脏中提取的蛋白质水解产物及其肽段可用作营养制品和功能性食品中的抗菌成分和抗氧化成分。

    Ennaas等[6]使用复合蛋白酶水解鲭鱼(Scomberscombrus)内脏,获得的水解物对革兰氏阳性菌(Listeria innocua)和革兰氏阴性菌均有抑制作用。Robert等[63]用复合蛋白酶将罗非鱼内脏水解,水解产物的必需氨基酸含量较高,且氨基酸组成平衡,并对鲁氏耶尔森菌(Yersinia ruckeri)、爱德华氏菌(Edwardsiellatarda)和巨大芽孢杆菌(Bacillus megaterium)有明显抗菌作用。

    抗菌肽除可直接杀灭微生物外,还可通过免疫调节机制改善其免疫功能,增强抗病能力,具有无污染、无残留、广谱抗菌及不易产生耐药性等特点,是水产动物自身免疫系统的重要组成部分,已成为国内外学者研究的热点[64],有望成为制药领域新抗生素以及食品工业中抗菌剂的潜在替代物。

    据报道鱼副产物蛋白水解物具有抗压、预防糖尿病、抗衰老、抗炎和抗癌等潜在活性,且在制药领域已有应用,例如鱼骨具有降血糖作用[65];罗非鱼皮对细胞生长具有保护作用[66]、对抗衰老具有好的发展潜力[67]。目前,有少量关于利用鱼的消化酶生产生物活性肽的报道。Gómez等[68]在罗非鱼内脏的水解产物研究中,用H2O2应激的人肠分化Caco-2细胞评价水解产物对氧化应激的保护作用,得到的两个馏分RTVH-A和FRTVH-V,在≤0.5 mg/mL的浓度下,可防止细胞活力的降低,并抑制H2O2诱导的细胞内活性氧(ROS)的积累,表明RTVH-A和FRTVH-V是具有抗氧化特性的成分,并且对ROS介导的肠损伤具有保护作用。Giannetto等[69]从鳀鱼内脏中获得的蛋白质水解物(APH)对脂多糖诱导的RAW 264.7细胞炎症有显著的保护作用,降低了促炎介质(即环氧化酶-2)的蛋白表达。同时对敲除ApoE基因的小鼠饮食中补充APH,发现其对主动脉和心脏组织中的促炎细胞因子及氧化应激相关基因(Cu/ZnSodMnSodCatGpxHo)的表达进行调节,表明APH可发挥有益作用,具有抗炎性。Xu等[70]对鮟鱇鱼肝脏进行水解得到鱼内脏蛋白肽,再利用实验小鼠爬升耐力试验证明了该蛋白肽是一种抗疲劳肽,有明显的抗疲劳作用。现有的研究表明鱼内脏蛋白水解物具有一定的疾病预防和治疗作用,具有潜在的应用价值,但距离实际应用还有很长的一段路要走,需要围绕制备工艺条件、活性成分作用机制等方面进行更广泛和深入的基础研究。

    目前国内外对鱼内脏的研究比较多,但这些研究还停留在较低水平的重复上,且基本上都还处于实验室研究阶段,深度研究和高值化综合利用较少。鱼内脏蛋白水解物具有抗氧化、ACE抑制、免疫调节、金属离子螯合、抑菌、抗糖尿病等多种生理活性,如何进一步提高水解产物的生理活性,并加快对其生理活性的体内和体外实验研究,使之尽早用于营养保健品或功能性食品的生产开发,尽快走上产业化的道路是值得期待的。

    蛋白水解物的生物活性与其氨基酸组成和序列有关,大多数具有免疫调节和抗癌活性的食源性蛋白水解物的活性都是通过细胞培养和动物模型进行测试的,仅有少数涉及临床实验。另一方面,利用鱼内脏蛋白水解物制备功能性食品还未见报道,大多是加入到鱼饲料,还需要进一步研究其在食品基质中的性能和稳定性。

    此外,FVPH的生产和使用,正成为一种受欢迎的可持续替代物,如天然抗氧化剂、蛋白质补充剂、饮料中的稳定剂和糖果产品中的风味增强剂等,但在原料和产品质量保证、低成本工艺的开发以及活性成分的分离和剩余组分回收方面存在挑战。另外,鱼内脏蛋白水解工艺若控制不当,可能会产生苦味,从而影响食品基质的感官特性,因此,如何控制水解工艺条件以避免产生苦味,以及对蛋白水解物进行有效的脱苦脱臭是值得研究的。

  • 图  1   鱼内脏蛋白水解物制备流程

    Figure  1.   Preparation process of fish viscera protein hydrolysate

    表  1   不同种类鱼内脏的基本成分构成

    Table  1   Basic nutritional contents of fish viscera of different species

    内脏种类水分粗脂肪粗蛋白灰分参考文献
    大黄鱼59.9429.3411.141.04周纷[18]
    鲈鱼4835121.1Munekata[19]
    草鱼28.861.78.60.6郭休玉[20]
    斑点叉尾鮰80.065.3411.900.91杨晓军[21]
    鳡鱼68.38钟清梅[22]
    鲤鱼45.2852.86张金哲[23]
    章鱼75.82.6162.6张秀娟[24]
    鲍鱼72.713.575.732.29苏永昌[25]
    沙丁鱼77.4613.0015.761.90Kechaouetal [26]
    金枪鱼75.7311.765.043.12Salwanee[27]
    鳕鱼60.002.0014.904.40Šlizyteetal[28]
    鲣鱼76.695.1318.651.26白冬[29]
    注:“−”表示未测定;表2~表3同。
    下载: 导出CSV

    表  2   鱼内脏水解制备蛋白肽的工艺

    Table  2   Preparation of protein peptides from fish viscera by hydrolysis

    种类pH料液比添加量温度(℃)时间(h)生理活性水解度(%)参考文献
    鳕鱼内脏7.51:3.19
    (m:m)
    复合酶(胰蛋白酶:
    风味蛋白酶=2:1)
    2.93%45.526 h氨基酸含量16.33 mg/mL孙一玮等[34]
    鮟鱇鱼肝8.5碱性蛋白酶3000 U/g55669.52林慧敏等[35]
    草鱼内脏8.040胰蛋白酶25 U/mL35337.87褚晨艳等[36]
    大黄鱼内脏9.08:100 (g:mL)Alcalase蛋白酶4.26%623.730.66李致瑜等[37]
    海参内脏8.0碱性蛋白酶4%553.0羟基自由基清除率63.75%梁杰等[38]
    鲟鱼肝脏10.01:10(g:mL)碱性蛋白酶10540 U/g458.681.7王靖麟等[39]
    鲟鱼鱼肠
    1:20胃蛋白酶3200 U/g351.5

    羟基自由基85.80%、
    ·OH清除率为78.06%
    饶承冬[40]
    斑点叉尾鮰内脏7.52:1 (mL:g)木瓜蛋白酶553ACE抑制率为72.34%杨晓军等[21]
    大西洋鲑鱼内脏9.00.7:50 (g:mL)内源蛋白酶0.7 mL/50 mL357 h总抗氧化活性为258.29 U15.00陈琳等[41]
    鳕鱼鱼鳔7.21复合蛋白酶200 U/mL58.566 DPPH清除能力61.1%李娜等[42]
    罗非鱼内脏10.08 g蛋白/L碱性蛋白酶0.306 U/g6042.5Gómez等[43]
    黄鳍金枪鱼内脏-中性蛋白酶39.61 AU/kg532.3530Motamedzadegan等[44]
    下载: 导出CSV

    表  3   鱼内脏蛋白酶解物中活性肽的氨基酸序列

    Table  3   Amino acid sequences of active peptides in the hydrolysates of fish viscera

    内脏种类大黄鱼内脏
    (福建)[47](g/100 g)
    鲢鱼内脏
    (g/100 g)[48]
    金枪鱼内脏[49]
    (g/100 g)
    青鱼内脏[50]
    (g/100 g)
    鲟鱼内脏[50]
    (g/100 g)
    草鱼内脏[10]
    (g/100 g)
    T1T2T3T4
    天门冬氨酸Asn4.773.309.559.226.828.668.38.50
    丝氨酸Ser2.765.071.394.152.576.814.464.24.34
    谷氨酸Glu9.262.4819.1313.010.0616.1313.715.01
    甘氨酸Gly3.6910.2314.9514.212.235.878.455.410.99
    组氨酸His3.842.684.632.494.198.452.382.082.06
    精氨酸Arg3.076.822.560.622.938.819.637.2810.82
    苏氨酸Thr5.185.776.314.150.585.94.673.54.02
    丙氨酸Ala6.574.931.843.293.402.235.296.37.04
    脯氨酸Pro6.4712.6615.5313.3411.104.473.466.24
    半胱氨酸Cys0.774.412.384.6521.730.50.23
    酪氨酸Phe3.353.765.082.892.703.853.882.343.53
    缬氨酸Val5.351.320.721.050.668.935.255.794.79
    蛋氨酸Met3.066.172.444.112.501.483.2810.32.02
    赖氨酸Lys7.278.302.306.153.301.876.556.87.07
    异亮氨酸Ile5.456.142.834.354.316.933.953.83.60
    亮氨酸Leu9.6110.254.717.466.777.77.77.137.17
    苯丙氨酸Phe6.085.713.674.854.163.854.283.143.53
    色氨酸Trp4.61
    总量100.00
    必需氨基酸40.8453.1630.1735.2329.40
    鲜味氨基酸46.23
    芳香族氨基酸9.4912.8010.6811.9930.08
    疏水性氨基酸42.1657.4146.6952.6745.13
    给质子氨基酸40.96
    注:T1表示胃蛋白酶提取制备的水解物;T2表示木瓜蛋白酶提取制备的水解物;T3表示酸碱处理的水解物;T4表示碱碱处理的水解物。
    下载: 导出CSV
  • [1] 《中国渔业统计年鉴》编辑委员会, 于秀娟, 徐乐俊, 吴反修主编. 中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2020: 3.

    Editorial Committee of China Fishery Statistics Yearbook, YU X J, XU L J, WU F X. China fishery statistics yearbook [M]. Beijing: China Agriculture Press, 2020: 3

    [2] 郑子懿, 李琳, 苏丹, 等. 鱼类内脏蛋白的开发和应用研究进展[J]. 食品科学,2019,40(17):295−301. [ZHENG Z Y, LI L, SU D, et al. Research progress in the development and application of fish visceral proteins[J]. Food Science,2019,40(17):295−301. doi: 10.7506/spkx1002-6630-20180923-248

    ZHENG Z Y, LI L, SU D, et al. Research progress in the development and application of fish visceral proteins [J]. Food Science, 2019, 40 (17): 295-301. doi: 10.7506/spkx1002-6630-20180923-248

    [3]

    HE S, FRANCO C, ZHANG W. Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP)[J]. Food Research International,2013,50(1):289−297. doi: 10.1016/j.foodres.2012.10.031

    [4] 叶彬清. 超临界CO2萃取秋刀鱼内脏油脂及卵磷脂氧化特性研究[D]. 上海: 上海海洋大学, 2015.

    YE B Q. Study on oxidation characteristics of visceral oil and lecithin of saury by supercritical CO2 extraction [D]. Shanghai: Shanghai Ocean University, 2015.

    [5]

    CHALAMAIAH M, JYOTHIRMAYI T, PRAKASH V, et al. Antiproliferative, ACE-inhibitory and functional properties of protein hydrolysates from rohu (Labeo rohita) roe (egg) prepared by gastrointestinal proteases[J]. Journal of Food Science and Technology,2015,52(12):8300−8307. doi: 10.1007/s13197-015-1969-y

    [6]

    ENNAAS N, HAMMAMI R, BEAULIEU L, et al. Purification and characterization of four antibacterial peptides from protamex hydrolysate of Atlantic mackerel (Scomber scombrus) by-products[J]. Biochemical and Biophysical Research Communications,2015,462(3):195−200. doi: 10.1016/j.bbrc.2015.04.091

    [7]

    MELGOSA R, TRIGUEROS E, SANZ M T, et al. Supercritical CO2 and subcritical water technologies for the production of bioactive extracts from sardine (Sardina pilchardus) waste[J]. The Journal of Supercritical Fluids,2020,164:104943. doi: 10.1016/j.supflu.2020.104943

    [8]

    MOHANTY U, MAJUMDAR R K, MOHANTY B, et al. Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysates from visceral waste of Labeo rohita[J]. Journal of Food Science and Technology,2020(58):4349−4358.

    [9]

    SHAFIEE S, GOLI M, KHOSHKHOO Z, et al. Optimization of hydrolysis conditions (temperature, time, and concentration of alkalase) of rainbow trout viscera using the response surface methodology[J]. Journal of Food Processing and Preservation,2021,45(5):e15456.

    [10]

    BHASKAR N, BENILA T, RADHA C, et al. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease[J]. Bioresour Technol,2008,99:335−43. doi: 10.1016/j.biortech.2006.12.015

    [11] 李星, 赵利, 朱琳, 等. 鱼类内脏的综合利用与研究进展[J]. 粮食与饲料工业,2019(9):49−52,57. [LI X, ZHAO L, ZHU L, et al. Comprehensive utilization and research progress of fish viscera[J]. Grain and Feed Industry,2019(9):49−52,57.

    LI X, ZHAO L, ZHU L, et al. Comprehensive utilization and research progress of fish viscera [J]. Grain and Feed Industry, 2019(9): 49-52, 57.

    [12]

    KETNAWA S, BENJAKUL S, MARTÍNEZ-ALVAREZ O, et al. Threephase partitioning and proteins hydrolysis patterns of alkaline proteases derived from fish viscera[J]. Separation and Purification Technology,2014,132(3):174−181.

    [13]

    ATHAILLAH Z A, PARK J W. Characterization of surimi slurries and their films derived from myofibrillar proteins with different extraction methods[J]. Food Bioscience,2016,15(1):118−125.

    [14]

    GILDBERG A, DAHL R, MIKKELSEN H, et al. Peptones from Atlantic cod stomach as nitrogen sources in growth media to marine bacteria[J]. Journal of Aquatic Food Product Technology,2010,19(2):75−83. doi: 10.1080/10498850.2010.486523

    [15]

    KETNAWA S, MARTÍNEZ-ALVAREZ O, BENJAKUL S, et al. Extraction and biochemical characterization of peptidases from giant catfish viscera by aqueous two-phase system[J]. Journal of Food Biochemistry,2015,39(4):429−438. doi: 10.1111/jfbc.12145

    [16] 张培, 申铉日, 李川, 等. 金鲳鱼内脏酸性蛋白酶的分离纯化及酶学性质研究[J]. 食品工业科技,2017,38(2):210−214. [ZHANG P, SHEN X R, LI C, et al. Isolation, purification and enzymatic properties of acidic protease from internal organs of pomfret[J]. Science and Technology of Food Industry,2017,38(2):210−214.

    ZHANG P, SHEN X R, LI C, et al. Isolation, purification and enzymatic properties of acidic protease from internal organs of pomfret [J]. Food Industry Science and Technology, 2017, 38(2): 210-214.

    [17] 吴燕燕, 陶文斌, 李来好, 等. 宁德地区养殖大黄鱼形态组织结构与品质特性[J]. 水产学报,2019,43(6):1472−1482. [WU Y Y, TAO W B, LI LH, et al. Morphological structure and quality characteristics of cultured Pseudosciaena crocea in Ningde area[J]. Journal of Fisheries,2019,43(6):1472−1482.

    WU Y Y, TAO W B, LI LH et al. Morphological structure and quality characteristics of cultured Pseudosciaena crocea in Ningde area [J]. Journal of Fisheries, 2019, 43(6): 1472-1482.

    [18] 周纷, 张艳霞, 张龙, 等. 冰鲜大黄鱼不同副产物中滋味成分差异分析[J]. 食品科学,2019,40(16):193−199. [ZHOU F, ZHANG Y X, ZHANG L, et al. Analysis of taste components in different by-products of chilled large yellow croaker[J]. Food Science,2019,40(16):193−199. doi: 10.7506/spkx1002-6630-20181008-034

    ZHOU F, ZHANG Y X, ZHANG L, et al. Analysis of taste components in different by-products of chilled large yellow croaker [J]. Food Science, 2019, 40 (16): 193-199 doi: 10.7506/spkx1002-6630-20181008-034

    [19]

    MUNEKATA P E S, PATEIRO M, DOMÍNGUEZ R, et al. Nutritional characterization of sea bass processing by-products[J]. Biomolecules,2020,10(2):232. doi: 10.3390/biom10020232

    [20] 郭休玉, 何兰. 草鱼内脏油乙醇提取及其脂肪酸组成分析[J]. 水产科技情报,2020,47(2):116−120. [GUO X Y, HE L. Ethanol extraction and fatty acid composition analysis of grass carpvisceral oil[J]. Aquatic Science and Technology Information,2020,47(2):116−120. doi: 10.16446/j.cnki.1001-1994.2020.02.010

    GUO X Y, HE L. Ethanol extraction and fatty acid composition analysis of grass carpvisceral oil [J]. Aquatic Science and Technology Information, 2020, 47(2): 116-120. doi: 10.16446/j.cnki.1001-1994.2020.02.010

    [21] 杨晓军, 陆剑锋, 林琳, 等. 酶解斑点叉尾鮰内脏制备血管紧张素转化酶抑制产物[J]. 食品科学,2010,31(22):237−241. [YANG X J, LU J F, LIN L, et al. Preparation of angiotensin converting enzyme inhibitor by enzymatic hydrolysis of channel catfish viscera[J]. Food Science,2010,31(22):237−241.

    YANG X J, LU J F, LIN L, et al. Preparation of angiotensin converting enzyme inhibitor by enzymatic hydrolysis of channel catfish viscera [J]. Food Science, 2010, 31 (22): 237-241.

    [22] 钟春梅. 鳡鱼油的制备研究[D]. 长沙: 长沙理工大学, 2014.

    ZHONG C M. Study on preparation of shad oil [D]. Changsha: Changsha University of Technology, 2014.

    [23] 张金哲, 高倩倩. 鲤鱼内脏鱼油提取工艺的优化[J]. 肉类工业,2017(9):31−35. [ZHANG J Z, GAO Q Q. Optimization of extraction process of carp visceral fish oil[J]. Meat Industry,2017(9):31−35. doi: 10.3969/j.issn.1008-5467.2017.09.007

    ZHANG J Z, GAO Q Q. Optimization of extraction process of carp visceral fish oil [J]. Meat Industry, 2017(9): 31-35. doi: 10.3969/j.issn.1008-5467.2017.09.007

    [24] 张秀娟. 章鱼内脏提取酸性蛋白酶的工艺研究[D]. 泉州: 华侨大学, 2016.

    ZHANG X J. Study on extraction of acid protease from octopus viscera[D]. Quanzhou: Huaqiao University, 2016.

    [25] 苏永昌, 刘淑集, 王茵, 等. 鲍鱼内脏多糖的提取及其抗氧化活性研究[J]. 吉林农业,2010(10):170−171. [SU Y C, LIU S J, WANG Y, et al. Extraction and antioxidant activity of abalone visceral polysaccharide[J]. Jilin Agriculture,2010(10):170−171.

    SU Y C, LIU S J, WANG Y, et al. Extraction and antioxidant activity of abalone visceral polysaccharide [J]. Jilin Agriculture, 2010(10): 170-171.

    [26]

    KECHAOU E S, DUMAY J, DONNAY-MORENO C, et al. Enzymatic hydrolysis of cuttlefish (Sepia officinalis) and sardine (Sardina pilchardus) viscera using commercial proteases: Effects on lipid distribution and amino acid composition[J]. Journal of Bioscience and Bioengineering,2009,107(2):158−164. doi: 10.1016/j.jbiosc.2008.10.018

    [27]

    SALWANEE S, AIDA W, MAMOT S, et al. Effects of enzyme concentration, temperature, pH and time on the degree of hydrolysis of protein extract from viscera of tuna (Euthynnus affinis) by using Alcalase[J]. Sains Malaysiana,2013,42(3):279−287.

    [28]

    SLIZYTE R, MOZURAITYTE R, MARTINEZ-ALVAREZ O, et al. Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones[J]. Process Biochemistry,2009,44(6):668−677. doi: 10.1016/j.procbio.2009.02.010

    [29] 白冬. 深海鲣鱼鱼油提取、精制与抗氧化活性研究[D]. 舟山: 浙江海洋大学, 2018.

    BAI D. Study on extraction, purification and antioxidant activity of deep sea bonito oil [D]. Zhoushan: Zhejiang Ocean University, 2018.

    [30] 张晓頔, 戴志远. 鱼副产物蛋白水解物生物活性及应用研究进展[J]. 食品科学,2021,42(13):335−343. [ZHANG X Y, DAI Z Y. Research progress on bioactivity and application of fish by-product protein hydrolysate[J]. Food Science,2021,42(13):335−343. doi: 10.7506/spkx1002-6630-20200523-271

    ZHANG X Y, DAI Z Y. Research progress on bioactivity and application of fish by-product protein hydrolysate [J]. Food Science, 2021, 42(13): 335-343. doi: 10.7506/spkx1002-6630-20200523-271

    [31] 黄浩, 赵聪, 陈贵堂. 食物源蛋白肽铁配合物的研究进展[J]. 中国食物与营养,2016,22(12):39−43. [HUANG H, ZHAO C, CHEN G T. Research progress of peptide iron complexes of food derived proteins[J]. China Food and Nutrition,2016,22(12):39−43. doi: 10.3969/j.issn.1006-9577.2016.12.010

    HUANG H, ZHAO C, CHEN G T. Research progress of peptide iron complexes of food derived proteins [J]. China Food and Nutrition, 2016, 22(12): 39-43. doi: 10.3969/j.issn.1006-9577.2016.12.010

    [32] 张邵博, 靳冬武, 李明生. 蛋白水解物制备工艺及其在生物技术领域中的应用研究进展[J]. 天然产物研究与开发,2019,31(2):354−362. [ZHANG S B, JIN D W, LI M S. Research progress on preparation technology of protein hydrolysate and its application in biotechnology[J]. Research and Development of Natural Products,2019,31(2):354−362.

    ZHANG S B, JIN D W, LI M S. Research progress on preparation technology of protein hydrolysate and its application in biotechnology [J]. Research and Development of Natural Products, 2019, 31(2): 354-362

    [33]

    SILVEIRA A T, ADAM C, PAOLA P A, et al. Acute effect of fish protein hydrolysate supplementation on vascular function in healthy individuals[J]. Journal of Functional Foods,2018,26:250−255.

    [34] 孙一玮, 李雪, 刘春娥, 等. 响应面法优化双酶复合水解鳕鱼加工副产物的加工工艺[J]. 食品安全质量检测学报,2017,8(7):2768−2773. [SUN Y W, LI X, LIU C E, et al. Optimization of processing technology of COD processing by-products by double enzyme composite hydrolysis by response surface methodology[J]. Journal of Food Safety and Quality Inspection,2017,8(7):2768−2773. doi: 10.3969/j.issn.2095-0381.2017.07.059

    SUN Y W, LI X, LIU C E, et al. Optimization of processing technology of COD processing by-products by double enzyme composite hydrolysis by response surface methodology [J]. Journal of Food Safety and Quality Inspection, 2017, 8(7): 2768-2773. doi: 10.3969/j.issn.2095-0381.2017.07.059

    [35] 林慧敏, 李仁伟, 张宾, 等. 鮟鱇鱼肝抗氧化肽的酶法制备及对羟自由基的清除作用[J]. 中国食品学报,2012,12(7):9−16. [LIN H M, LI R W, ZHANG B, et al. Enzymatic preparation of antioxidant peptides from Tilapia liver and their scavenging effect on hydroxyl free radicals[J]. Chinese Journal of Food,2012,12(7):9−16. doi: 10.3969/j.issn.1009-7848.2012.07.002

    LIN H M, LI R W, ZHANG B, et al. Enzymatic preparation of antioxidant peptides from Tilapia liver and their scavenging effect on hydroxyl free radicals [J]. Chinese Journal of Food, 2012, 12(7): 9-16. doi: 10.3969/j.issn.1009-7848.2012.07.002

    [36] 褚晨艳, 颜子晨, 王缘, 等. 草鱼内脏蛋白的水解工艺研究[J]. 食品工程,2018(2):14−16, 21. [CHU C Y, YAN Z C, WANG Y, et al. Study on hydrolysis process of visceral protein of grass carp[J]. Food Engineering,2018(2):14−16, 21. doi: 10.3969/j.issn.1673-6044.2018.02.005

    CHU C Y, YAN Z C, WANG Y, et al. Study on hydrolysis process of visceral protein of grass carp [J]. Food Engineering, 2018(2): 14-16, 21. doi: 10.3969/j.issn.1673-6044.2018.02.005

    [37] 李致瑜, 庄玮婧, 张宁宁, 等. Alcalase蛋白酶酶解大黄鱼内脏制备抗氧化肽[J]. 中国食品学报,2016,16(8):109−117. [LI Z Y, ZHUANG W J, ZHANG N N, et al. Preparation of antioxidant peptides by enzymatic hydrolysis of large yellow croaker viscera with Alcalase protease[J]. Chinese Journal of Food,2016,16(8):109−117. doi: 10.16429/j.1009-7848.2016.08.016

    LI Z Y, ZHUANG W J, ZHANG N N, et al. Preparation of antioxidant peptides by enzymatic hydrolysis of large yellow croaker viscera with Alcalase protease[J]. Chinese Journal of Food, 2016, 16(8): 109-117. doi: 10.16429/j.1009-7848.2016.08.016

    [38] 梁杰, 汪少芸. 海参蛋白肽制备工艺优化及抗氧化性质[J]. 莆田学院学报,2016,23(2):67−71. [LIANG J, WANG S Y. Optimization of preparation process and antioxidant properties of sea cucumber protein peptides[J]. Journal of Putian University,2016,23(2):67−71.

    LIANG J, WANG S Y. Optimization of preparation process and antioxidant properties of sea cucumber protein peptides [J]. Journal of Putian University, 2016, 23(2): 67-71.

    [39] 王靖麟, 王世博, 徐睿, 等. 鲟鱼肝酶解条件优化及酶解液对双歧杆菌增殖效果的研究[J]. 中国酿造,2020,39(4):152−158. [WANG J L, WANG S B, XU R, et al. Optimization of enzymatic hydrolysis conditions of sturgeon liver and effect of enzymatic hydrolysis solution on Bifidobacterium proliferation[J]. China Brewing,2020,39(4):152−158. doi: 10.11882/j.issn.0254-5071.2020.04.030

    WANG J L, WANG S B, XU R, et al. Optimization of enzymatic hydrolysis conditions of sturgeon liver and effect of enzymatic hydrolysis solution on Bifidobacterium proliferation [J]. China Brewing, 2020, 39(4): 152-158. doi: 10.11882/j.issn.0254-5071.2020.04.030

    [40] 饶承冬. 鲟鱼肝脏铁蛋白分离纯化、结构表征及铁释放动力学初步研究[D]. 成都: 四川农业大学, 2019.

    RAO C D. Isolation, purification, structural characterization and iron release kinetics of ferritin from sturgeon liver [D]. Chengdu: Sichuan Agricultural University, 2019.

    [41] 陈琳, 李秉钧, 冯俊荣. 利用大西洋鲑内源酶酶解加工废弃物制取抗氧化肽的研究[J]. 渔业现代化,2016,43(4):64−69. [CHEN L, LI B J, FENG J R. Study on preparation of antioxidant peptides from endogenous enzymatic processing waste of Atlantic salmon[J]. Fishery Modernization,2016,43(4):64−69. doi: 10.3969/j.issn.1007-9580.2016.04.012

    CHEN L, LI B J, FENG J R. Study on Preparation of antioxidant peptides from endogenous enzymatic processing waste of Atlantic salmon[J]. Fishery Modernization, 2016, 43(4): 64-69. doi: 10.3969/j.issn.1007-9580.2016.04.012

    [42] 李娜, 周德庆, 刘楠, 等. 鳕鱼鱼鳔抗氧化肽制备工艺研究[J]. 渔业科学进展,2020,41(2):191−199. [LI N, ZHOU D Q, LIU N, et al. Study on preparation technology of antioxidant peptides from cod swim bladder[J]. Progress in Fishery Science,2020,41(2):191−199.

    LI N, ZHOU D Q, LIU N, et al. Study on preparation technology of antioxidant peptides from cod swim bladder [J]. Progress in Fishery Science, 2020, 41(2): 191-199.

    [43]

    GOMEZ L J, GOMEZ N A, ZAPATA J E, et al. In-vitro antioxidant capacity and cytoprotective/cytotoxic effects upon Caco-2 cells of red tilapia (Oreochromis spp.) viscera hydrolysates[J]. Food Research International,2019,120:52−61. doi: 10.1016/j.foodres.2019.02.029

    [44]

    MOTAMEDZADEGAN A, DAVARNIAM B, ASADI G, et al. Optimization of enzymatic hydrolysis of yellowfin tuna Thunnus albacares viscera using Neutrase[J]. International Aquatic Research,2010(2):173−181.

    [45] 赵玉红, 孔保华, 张立钢. 酶解鲢鱼副产物中蛋白质制备含肽运动饮料[J]. 食品工业,2003(2):24−25. [ZHAO Y H, KONG B H, ZHANG L G. Preparation of peptide containing sports beverage from protein by-product of enzymatic hydrolysis of silver carp[J]. Food Industry,2003(2):24−25.

    ZHAO Y H, KONG B H, ZHANG L G. Preparation of peptide containing sports beverage from protein by-product of enzymatic hydrolysis of silver carp[J]. Food Industry, 2003(2): 24-25.

    [46]

    HORDUR G KRISTINSSON, BARBARA A R. Fish protein hydrolysates: Production, biochemical, and functional properties[J]. Critical Reviews in Food Science and Nutrition,2000,40(1):43−81. doi: 10.1080/10408690091189266

    [47] 李致瑜. 大黄鱼内脏抗氧化肽的制备、分离纯化及其理化性质研究[D]. 福州: 福建农林大学, 2016.

    LI Z Y. Preparation, purification and physicochemical properties of antioxidant peptides from internal organs of Pseudosciaena crocea [D]. Fuzhou: Fujian Agriculture and Forestry University, 2016.

    [48]

    HASSAN M A, XAVIER M, GUPTA S, et al. Antioxidant properties and instrumental quality characteristics of spray dried Pangasius visceral protein hydrolysate prepared by chemical and enzymatic methods[J]. Environmental Science and Pollution Research,2019,26:8875−8884. doi: 10.1007/s11356-019-04144-y

    [49]

    PEZESHK S, OJAGH S M, REZAEI M, et al. Fractionation of protein hydrolysates of fish waste using membrane ultrafiltration: Investigation of antibacterial and antioxidant activities[J]. Probiotics and Antimicrobial Proteins,2019,11(3):1015−1022. doi: 10.1007/s12602-018-9483-y

    [50] 王思远, 张业辉, 黄利华, 等. 鱼蛋白肽的制备及其作为功能食品基料的应用[J]. 广州城市职业学院学报,2017,11(2):54−58. [WANG S Y, ZHANG Y H, HUANG L H, et al. Preparation of fish egg white peptide and its application as functional food base[J]. Journal of Guangzhou City Vocational College,2017,11(2):54−58. doi: 10.3969/j.issn.1674-0408.2017.02.012

    WANG S Y, ZHANG Y H, HUANG L H, et al. Preparation of fish egg white peptide and its application as functional food base [J]. Journal of Guangzhou City Vocational College, 2017, 11(2): 54-58 doi: 10.3969/j.issn.1674-0408.2017.02.012

    [51]

    WU R B, WU C L, LIU D, et al. Antioxidant and anti-freezing peptides from salmon collagen hydrolysate prepared by bacterial extracellular protease[J]. Food Chemistry,2018,248:346−352. doi: 10.1016/j.foodchem.2017.12.035

    [52]

    GANESH R J, NAZEER R A, SAMPATH KUMAR N S. Purification and identification of antioxidant peptide from black pomfret, Parastromateus niger (Bloch, 1975) viscera protein hydrolysate[J]. Food Science and Biotechnology,2011,20(4):1087−1094. doi: 10.1007/s10068-011-0147-x

    [53]

    JE J Y, LEE K H, MI H L, et al. Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis[J]. Food Research International,2009,42(9):1266−1272. doi: 10.1016/j.foodres.2009.06.013

    [54]

    BOUGATEF A, NEDIAR-ARROUME N, MANNI L, et al. Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of (Sardinella aurita) by-products proteins[J]. Food Chemistry,2010,118(3):559−565. doi: 10.1016/j.foodchem.2009.05.021

    [55]

    VILLAMIL O, H VAQUIRO, SOLANILLA J F. Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties[J]. Food Chemistry,2017,224:160−171. doi: 10.1016/j.foodchem.2016.12.057

    [56] 辛志宏, 马海乐, 吴守一. 食品蛋白质中降血压肽的功能与应用[J]. 食品与发酵工业,2003(8):84−87. [XIN Z H, MA H L, WU S Y. Function and application of antihypertensive peptides in food proteins[J]. Food and Fermentation Industry,2003(8):84−87. doi: 10.3321/j.issn:0253-990X.2003.08.019

    XIN Z H, MA H L, WU S Y. Function and application of antihypertensive peptides in food proteins [J]. Food and Fermentation Industry, 2003(8): 84-87 doi: 10.3321/j.issn:0253-990X.2003.08.019

    [57]

    AHN C B, JEON Y J, KIM Y T, et al. Angiotensin I converting enzyme (ACE) inhibitory peptides from salmon byproduct protein hydrolysate by alcalase hydrolysis[J]. Process Biochemistry,2012,47(12):2240−2245. doi: 10.1016/j.procbio.2012.08.019

    [58]

    BOUGATEF A, NEDIAR-ARROUME N, RAVALLEC-PLE R, et al. Angiotensin I-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases[J]. Food Chemistry,2008,111(2):350−356. doi: 10.1016/j.foodchem.2008.03.074

    [59] 窦鑫, 吴燕燕. 海水鱼内脏高值化利用的研究现状与发展趋势[J]. 食品工业科技,2021,42(13):372−378. [DOU X, WU Y Y. Research status and development trend of high-value utilization of marine fish viscera[J]. Science and Technology of Food Industry,2021,42(13):372−378.

    DOU X, WU Y Y. Research status and development trend of high-value utilization of marine fish viscera[J]. Food Industry Science and Technology, 2021, 42(13): 372-378.

    [60]

    RAHEEM N, STRANUS S K. Mechanisms of action for antimicrobial peptides with antibacterial and antibiofilm functions[J]. Frontiers in Microbiology,2019,10:2866. doi: 10.3389/fmicb.2019.02866

    [61] 齐志涛, 徐杨, 邹钧, 等. 水产动物抗菌肽研究进展[J]. 水产学报,2020,44(9):1572−1583. [QI Z T, XU Y, ZOU J, et al. Research progress of antimicrobial peptides in aquatic animals[J]. Journal of Fisheries,2020,44(9):1572−1583.

    QI Z T, XU Y, ZOU J, et al. Research progress of antimicrobial peptides in aquatic animals [J]. Journal of Fisheries, 2020, 44(9): 1572-1583.

    [62] 邓梅, 王俊钢, 高阳, 等. 耐低温肠球菌Enterococcus sp. MB2-1产细菌素的生物学特性[J]. 食品科学,2013,34(19):170−175. [DENG M, WANG J G, GAO Y, et al. Biological characteristics of bacteriocin production by thermotolerant Enterococcus sp. MB2-1[J]. Food Science,2013,34(19):170−175. doi: 10.7506/spkx1002-6630-201319036

    DENG M, WANG J G, GAO Y, et al. Biological characteristics of bacteriocin production by thermotolerant Enterococcus sp. MB2-1 [J]. Food Science, 2013, 34 (19): 170-175. doi: 10.7506/spkx1002-6630-201319036

    [63]

    ROBERT M, ZATYLNY-GAUDIN C, FOURNIER V, et al. Molecular characterization of peptide fractions of a Tilapia (Oreochromis niloticus) by-product hydrolysate and in vitro evaluation of antibacterial activity[J]. Process Biochemistry,2015,50(3):487−492. doi: 10.1016/j.procbio.2014.12.022

    [64]

    RONCEVIC T, PUIZINA J, TOSSI A. Antimicrobial peptides as anti-infective agents in pre-post-antibiotic era[J]. International Journal of Molecular Sciences,2019,20(22):5713. doi: 10.3390/ijms20225713

    [65]

    HOU H, FAN Y, LI B, et al. Preparation of immunomodulatory hydrolysates from Alaska pollock frame[J]. Journal of the Science of Food and Agriculture,2012,92(15):3029−3038. doi: 10.1002/jsfa.5719

    [66] 姜速峰, 赵谋明, 江虹锐, 等. 罗非鱼皮胶原酶解物对HaCat细胞生长的影响[J]. 食品科学,2018,39(13):222−228. [JIANG S F, ZHAO M M, JIANG H R, et al. Effect of Tilapia skin collagenase hydrolysate on HaCat cell growth[J]. Food Science,2018,39(13):222−228. doi: 10.7506/spkx1002-6630-201813033

    JIANG S F, ZHAO M M, JIANG H R, et al. Effect of Tilapia skin collagenase hydrolysate on HaCat cell growth [J]. Food Science, 2018, 39 (13): 222-228. doi: 10.7506/spkx1002-6630-201813033

    [67] 周先艳, 樊建, 唐远龙, 等. 罗非鱼皮胶原蛋白水解产物的体外抗氧化活性和体内抗衰老作用[J]. 食品科学,2016,37(15):221−226. [ZHOU X Y, FAN J, TANG Y L, et al. Antioxidant activity in vitro and anti-aging effectin vivo of collagen hydrolysate from Tilapia skin[J]. Food Science,2016,37(15):221−226. doi: 10.7506/spkx1002-6630-201615037

    ZHOU X Y, FAN J, TANG Y L, et al. Antioxidant activity in vitro and anti-aging effect in vivo of collagen hydrolysate from Tilapia Skin [J]. Food Science, 2016, 37 (15): 221-226. doi: 10.7506/spkx1002-6630-201615037

    [68]

    GOMEZ L J, GOMEZ N A, ZAPATA J E, et al. Optimization of the red Tilapia (Oreochromis spp.) viscera hydrolysis for obtaining iron-binding peptides and evaluation of in vitro iron bioavailability[J]. Foods, 2020, 9(7): 883.

    [69]

    GIANNETTO A, ESPOSITO E, LANZA M, et al. Protein hydrolysates from anchovy (Engraulis encrasicolus) waste: In vitro and in vivo biological activities[J]. Mar Drugs,2020,18(2):86. doi: 10.3390/md18020086

    [70]

    XU J J, LI Y Y, REGENSTEIN J, et al. In vitro and in vivo anti-oxidation and anti-fatigue effect of monkfish liver hydrolysate[J]. Food Bioscience,2017,18:9−14. doi: 10.1016/j.fbio.2017.03.002

  • 期刊类型引用(8)

    1. 张巧,何雨婕,李贤,雷激. 改性方法对柠檬皮渣粉结构及功能特性的影响. 食品工业科技. 2024(01): 88-96 . 本站查看
    2. 韩海珠,刘亚平,高宇虹,狄建兵,李泽珍,孙胜. 超微粉碎对水果番茄粉理化性质与结构特性的影响. 核农学报. 2024(08): 1512-1522 . 百度学术
    3. 肖佳豪,张群,潘兆平,李涛,孙恬,江盛宇,李绮丽,付复华. 低温超微粉碎对茶枝柑果肉粉理化性质和功能特性的影响. 食品科学. 2024(20): 220-231 . 百度学术
    4. 胡龙彪,翟晓娜,李媛媛,郝光飞,裴海生. 超微粉碎技术在农副产品中的应用进展. 食品科技. 2023(02): 92-99 . 百度学术
    5. 黄浩燃,张星启,温辉翠,李育瑶,黄子桐,范振梅,宋贤良. 球磨处理对菠萝蜜果皮不溶性膳食纤维结构及性能的影响. 食品工业科技. 2023(11): 211-218 . 本站查看
    6. 张明宇,宋雅婕,牟庆庆,侯晓鸥,宋子龙,段乐心,马冉,杨嫣婕,于克学,陈庆敏,程媛媛. 金银花雪梨超微粉制备低糖果冻的研究. 中国果菜. 2023(09): 35-40 . 百度学术
    7. 王缓,王乐姣,岳陈林瑞,罗程,祝媛,杨林伟,张涛,李超,陈银基. 超微粉碎预处理对碱提和水提麦麸多糖理化特性的影响. 食品工业科技. 2023(22): 19-27 . 本站查看
    8. 赵愉涵,陈庆敏,岳凤丽,迟晓君,闫琰,焦文晓,杜雅珉,傅茂润,崔波,崔照林. 超微粉碎处理对五谷杂粮粉特性的影响. 中国果菜. 2022(07): 28-35 . 百度学术

    其他类型引用(4)

图(1)  /  表(3)
计量
  • 文章访问数:  328
  • HTML全文浏览量:  85
  • PDF下载量:  17
  • 被引次数: 12
出版历程
  • 收稿日期:  2021-07-18
  • 网络出版日期:  2022-07-03
  • 刊出日期:  2022-09-14

目录

/

返回文章
返回
x 关闭 永久关闭