• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

淮山褐变机理及其控制技术研究进展

李山林, 张雁, 廖娜, 钟立煌, 王佳佳

李山林,张雁,廖娜,等. 淮山褐变机理及其控制技术研究进展[J]. 食品工业科技,2022,43(13):434−444. doi: 10.13386/j.issn1002-0306.2021070184.
引用本文: 李山林,张雁,廖娜,等. 淮山褐变机理及其控制技术研究进展[J]. 食品工业科技,2022,43(13):434−444. doi: 10.13386/j.issn1002-0306.2021070184.
LI Shanlin, ZHANG Yan, LIAO Na, et al. Research Progress on the Browning Mechanism and Its Control Technology of Chinese Yam[J]. Science and Technology of Food Industry, 2022, 43(13): 434−444. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070184.
Citation: LI Shanlin, ZHANG Yan, LIAO Na, et al. Research Progress on the Browning Mechanism and Its Control Technology of Chinese Yam[J]. Science and Technology of Food Industry, 2022, 43(13): 434−444. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070184.

淮山褐变机理及其控制技术研究进展

基金项目: 广东省本土创新创业团队项目(2019BT02N112);广东省现代农业产业技术体系创新团队建设专项资金(2020KJ117);广东省农业科学院农业优势产业学科团队建设项目(202108TD)。
详细信息
    作者简介:

    李山林(1998−),女,硕士研究生,研究方向:农产品贮藏加工,E-mail:DaisyLee130@163.com

    通讯作者:

    张雁(1967−),女,博士,研究员,研究方向:食品生物化学与农产品加工,E-mail:zhang__yan_@126.com

  • 中图分类号: TS255.36

Research Progress on the Browning Mechanism and Its Control Technology of Chinese Yam

  • 摘要: 淮山是一种营养价值极高的药食同源食品。褐变是淮山加工贮藏过程中影响其品质的主要问题之一,有效控制淮山褐变,保持其色泽和营养特性,提高其货架贮藏期,对保障淮山品质和提高消费者接受性具有重要意义。在已有研究的基础上,本文阐述了淮山酶促褐变与非酶褐变的相关机理,围绕酚类底物、酶及氧气等酶促褐变三要素阐述了淮山酶促褐变机理,并对淮山加工及贮藏中的美拉德反应和焦糖化非酶褐变机理进行了介绍;综述了不同褐变控制技术对淮山褐变的控制效果,分析现有问题,并对未来前景进行了展望,以期为淮山褐变控制技术的研究和应用发展提供参考。
    Abstract: Chinese yam is a kind of food with high nutritional value. Browning is one of the main problems affecting the quality of Chinese yam during processing and storage. It is of great significance to effectively control the browning of Chinese yam, maintain its color and nutritional characteristics, and improve its shelf life in order to guarantee the quality of Chinese yam and improve the acceptance of consumers. On the basis of previous studies, the mechanism of enzymatic browning and non-enzymatic browning of Chinese yam are described in this paper. The mechanism of enzymatic browning of Chinese yam is explained by three elements of enzymatic browning including phenolic substrate, enzyme and oxygen, and the mechanism of Maillard reaction and non-enzymatic browning of caramelization in processing and storage of Chinese yam are introduced. In this paper, the control effects of different browning control techniques on Chinese yam are summarized, the existing problems are analyzed, and the future prospects are prospected, in order to provide reference for the research and application development of control techniques on Chinese yam browning.
  • 淮山(Dioscarea opposita)又名山药,为薯蓣科薯蓣属多年生缠绕性草本植物的根茎,是我国传统的药食同源食物,也属于我国卫生部公布的药食两用资源[1]。近年来,我国淮山加工产业发展迅速,加工技术和产品形式皆呈现多元化发展趋势,出现了鲜切速冻淮山、果脯、果蔬汁、罐头以及酒、醋等多种形式的新产品[2]。尽管淮山加工产业发展迅速,褐变仍然是淮山加工贮藏过程中存在的主要问题之一,淮山中多酚氧化酶(polyphenol oxidase,PPO)、过氧化物酶(peroxidase,POD)和苯丙氨酸解氨酶(phenylalanine ammonia-lyase,PAL)等酶类代谢旺盛,其以绿原酸等酚类活性物质作为底物,在贮藏加工过程中易发生酶促褐变[3]。又因淮山含有大量的蛋白质和氨基酸,在加工过程中蛋白质、氨基酸易与还原糖缩合,发生美拉德褐变反应,导致其色泽深暗[4]。适度褐变可以改善淮山色泽,提高其感官品质;而过度褐变则会导致淮山营养成分大量流失,色泽不佳,商品价值降低[5]。因此,应用恰当的方式抑制淮山褐变,不仅使其感官品质得到保证,也可使其中的绿原酸等酚类活性物质得到有效保护。目前,关于淮山酶促褐变控制技术研究较多,运用微波、复合抑制剂和涂膜处理等方式可较好地抑制淮山酶促褐变[6-7]。因此,本文阐述了淮山酶促褐变与非酶褐变机理,综述了加热、微波处理等物理技术,抑制剂添加、涂膜保鲜等化学技术及脉冲真空干燥、超声处理等其他新型技术在淮山褐变控制中的研究进展,并对现有淮山褐变控制技术存在的问题及发展方向进行了探讨和展望,以期为淮山褐变控制技术的进一步研究和应用发展提供参考。

    褐变是淮山加工贮藏过程中影响其品质的主要问题之一,根据其褐变机理,可分为酶促褐变与非酶褐变。

    酶促褐变是指果蔬在受到机械损伤或处于受热、受冻的异常环境下,在酶的作用下将酚类物质氧化形成醌类物质,随后醌类物质与其他物质结合产生褐色聚合物的生理生化过程[8],其主要影响因素包括酚类底物、酶以及氧等。

    酚类物质是指在植物酶促褐变过程中可与酶相互作用的底物,以游离或结合态的形式存在于植物体内,酚类物质的共同点是都含有带羟基的苯环结构,羟基的数目和位置因其种类而异[9]。果实经酶促褐变后,酚类物质被氧化为不稳定的醌类物质。醌类物质是酶促褐变的重要中间产物,既可与蛋白质、氨基酸残基侧链基团等非酚类化合物发生耦合氧化反应,还可与酚类物质迅速发生耦合氧化,聚合形成分子量较大的褐色聚合物[10]

    不同种类果蔬的酚类底物种类和含量差异较大。LIU等[11]研究发现马铃薯中的绿原酸(chlorogenic acid,CGA)是导致马铃薯酶褐变的重要底物。郁志芳等[12]的研究结果表明,引起淮山酶促褐变的主要酚类底物是绿原酸。XI等[13]发现绿原酸是反式肉桂酸经过苯丙醇代谢生成的酯类化合物。酚类物质的含量会影响褐变的程度,雷静等[14]研究发现葡萄干的褐变程度与酚类物质含量呈正相关。NAOKI等[15]的研究表明淮山的褐变程度与绿原酸含量有关,降低酚类底物含量可以降低褐变的潜力,故控制淮山酶促褐变可以从降低酚类物质含量入手。酚类化合物氧化后可形成不稳定的产物醌,且醌的不稳定性随pH的升高而增加,故在较低pH下,淮山酶促褐变控制效果更好[16]。因此,可以通过鉴别淮山酚类底物的种类,有针对性地降低其含量,以达到控制淮山酶促褐变的目的。

    酶促褐变与PPO、POD、PAL等酶活力呈正相关,其相关性大小为PPO>POD>PAL。SETH等[17]的研究表明催化淮山酶促褐变的酶主要是PPO。PPO为淮山植物细胞内的一类末端氧化酶,包括单酚氧化酶、双酚氧化酶和漆酶三种。单酚氧化酶能催化单羟基酚为邻二羟基酚;双酚氧化酶能催化氧化邻位酚,但不能氧化间位酚与对位酚;漆酶能氧化邻位酚和对位酚,但不能氧化间位酚。绿原酸为邻位酚,因此,参与绿原酸氧化的主要是双酚氧化酶和漆酶[18]。同时酶促褐变相关酶的活性与温度和pH密切相关。高义霞等[19]发现淮山PPO的最适温度为35 ℃,最适pH为6.0。淮山POD的最适反应温度为60 ℃,最适pH为6.0,淮山PAL的最适温度为45 ℃,最适反应pH为8.6[20]。金属离子的存在也会影响PPO的活性,SAHIN等[21]报道了Cr3+和Cu2+离子对三种野生蘑菇PPO的活性均有抑制作用。LI等[22]从鸡皮淮山中提取PPO发现,Fe3+、Mg2+可提高PPO活性,Ca2+、K+、Ba2+、Mn2+可显著抑制其活性,且随着浓度的增加而增强。

    淮山组织褐变还与细胞内氧化还原代谢平衡和保护酶系统有关。保护酶系统主要有以下两类:一类是氧化酶系统,主要包括超氧化歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)、POD等,它们能清除和阻止自由基攻击淮山细胞膜,从而防止脂膜过氧化;另一类是抗氧化酶系统,主要有抗坏血酸(ascorbic acid,ASA)、维生素E等,这类物质在清除自由基和活性氧的同时,也可以起到抗氧化剂的作用,抑制酚类物质氧化[23]。通常情况下,淮山组织中有较高的还原势,正常的氧化还原代谢平衡使得氧化形成的醌类物质通过还原氧化或转化而不聚合形成黑色素。当环境条件处于逆境时,淮山氧化酶系统中的酶类相互作用失调,淮山细胞内氧化还原代谢水平失衡,从而导致淮山褐变。LUENGWILAI等[24]研究表明淮山受到损伤会诱导褐变相关酶的表达,导致保护酶系统遭到破坏从而褐变。而COELHO等[25]通过研究鲜切淮山表明贮藏加工过程中的损伤和脱水联合作用会导致淮山氧化酶系统中的酶类相互作用从而加剧淮山褐变。

    氧是淮山褐变必不可少的条件之一[26]。由于绿原酸分布于液泡中,PPO位于质体中,二者互不接触,外界氧气也无法直接接触[27]。在正常情况下氧进入淮山内部主要有两种机制,GUADARRAMA等[28]通过研究气体渗透机制,发现氧气的运输主要靠淮山表皮结构和蜡沉积。LAMMERTYN等[29]研究表明由于孔隙空间的传输机制发生了扩散导致氧气进入淮山内部,最后氧气在组织膜内扩散至耗氧点,与多酚氧化酶发生作用导致淮山褐变。

    质膜是活细胞与环境之间的界面和保障,能保证膜内外物质交换的有效进行。正常的淮山组织不发生褐变与PPO的区域性有密切关系,酚类底物主要贮存于淮山细胞的液泡中,而淮山PPO位于正常细胞的质体中,二者互不接触,此时即使它们与氧同时存在也不会发生褐变[30]。当淮山因外力受到机械性损伤或处于受热受冻的异常环境时,细胞壁和细胞膜完整性被破坏,打破了绿原酸和PPO的平衡模式,PPO释放出来,如图1所示,在氧的参与下绿原酸氧化为醌,醌自发进行非酶促聚合并与蛋白质的氨基酸残基侧链基团反应产生褐色或黑色物质,从而形成褐变[31]

    图  1  酶促褐变过程[31]
    Figure  1.  Enzymatic browning process[31]

    在淮山加工及贮存过程中往往会伴随着非酶褐变现象的发生,主要包括美拉德反应和焦糖化反应。与酶褐变不同,这些反应不需酶的催化故称非酶褐变。

    1912年法国科学家MAILLARD[32]首次提出美拉德反应的概念,美拉德反应又称非酶褐变,为反应体系中存在的氨基酸及其化合物与具有羰基的化合物之间所发生的羰氨反应,也是食品加工、贮藏、运输中普遍存在的一类非常重要的化学反应。KANZLER等[33]研究发现美拉德反应中类黑素是由糖和氨基酸经过一系列反应最终形成的色素的聚合物。淮山处于美拉德反应初期阶段时,游离天冬门酰胺与还原糖之间进行缩合[34],此时由于淮山美拉德反应体系中具有醛糖,醛糖就会形成N-取代氨基糖,经过重排后形成Amadori产物[35]。Amadori重排产物经过反应生成糠醛、羟甲基糠醛或者通过Strecker降解机制在脱羧脱氨后生成丙烯酰胺[36]。上述中间产物通过各种复杂的反应,最终形成类黑素导致褐变发生[37]

    糖类在没有氨基化合物存在的情况下,当加热温度超过它的熔点135 ℃时,即发生脱水或降解,然后进一步缩合生成粘稠状的黑褐色产物,这类反应称为焦糖化反应[38]。焦糖化反应易发生在高温、碱性及高糖浓度情况下[39]。在酸性条件下,由于加热作用使得糖分解形成呋喃甲醛及羟甲基糠醛(Hydroxymethylfurfural,HMF),与氨基化合物继续反应,而参与美拉德反应后阶段的缩合反应形成类黑精色素[40]

    由淮山酶促褐变机理可知,可从保护酚类活性物质、抑制多酚氧化酶活性和隔绝氧气等三方面对其进行控制。此外,由于微波处理、脉冲真空干燥、超声处理和超高压处理等新型技术可以抑制PPO等褐变相关酶活性,因而也广泛应用于控制淮山褐变。

    目前应用于淮山中保护其主要酚类物质绿原酸活性的方法主要有三种,分别是使绿原酸改性、添加绿原酸类似物和添加醌类偶联剂[41]

    添加甲基转移酶将邻二羟基化合物进行甲基化处理,形成难于接受酚酶催化的甲基取代衍生物,能有效防止褐变。如以S-腺苷蛋氨酸为甲基供体,在甲基转移酶作用下,将绿原酸甲基化为3-阿魏酰金鸡钠酸,使得绿原酸不能参与酶促褐变,从而抑制淮山的酶促褐变[42]这种方式能很大程度地保持淮山的色泽、风味以及组织状态,但是甲基化法所用的抗褐变剂S-腺苷蛋氨酸较为昂贵,可用铝化物或锌化物替代S-腺苷蛋氨酸作抗褐变剂。韩涛等[43]发现用0.25% Al(OH)3在中性或偏酸性条件、0.10%~0.25% ZnCl2在酸性条件下可以替代S-腺苷蛋氨酸有效地抑制马铃薯褐变,但尚未见应用于淮山褐变控制中,可作为今后抑制淮山褐变的研究方向。

    此外,添加绿原酸甲酯、绿原酸乙酯等绿原酸类似物也可实现保护酚类活性物质、抑制褐变的目的[44]。绿原酸类似物是多酚氧化酶的竞争性抑制剂,能与多酚氧化酶相结合,导致绿原酸无法参与反应,从而抑制酶促褐变的发生[5]。GACCHE等[45]发现,谷胱甘肽和肉桂酸可防止苹果汁的褐变。同时,绿原酸的类似物来源于植物本身,安全性较高,能够防止因添加外来物质对淮山的品质造成的影响[46],也是今后抑制淮山褐变的一个重要研究方向。

    除直接将绿原酸改性或添加绿原酸类似物外,还可以通过添加适量的醌类偶联剂使之与酚酶氧化产物醌相结合,将醌类物质还原为二酚,形成无色物质从而抑制褐变。如曲酸可还原醌为二酚来阻止色素形成。孙蕊等[47]用质量分数为0.1%、0.3%或0.5%曲酸处理淮山发现其均可不同程度地延缓淮山褐变,但是曲酸的安全性目前尚存在争议。L-半胱氨酸也有防褐变作用,RICHARD等[48]表明酶促反应产生的醌直接与L-半胱氨酸结合形成无色化合物,且半胱氨酸应用于淮山褐变抑制相对曲酸更安全。

    已有研究表明,对淮山褐变影响最为显著的酶为多酚氧化酶[49],抑制其活性可以通过热处理、化学抑制剂、涂膜处理来实现。

    热处理可以控制淮山生理褐变、防止腐烂。陈媛媛[50]的研究表明,在热处理温度为45 ℃时,可抑制淮山褐变。范文广等[51]将淮山用45 ℃热水处理10 min,褐变抑制效果较好。适当提高处理温度,缩短处理时间也能很好地抑制淮山褐变。COULIBALY等[52]发现将冻干淮山片在85 ℃下处理2 min能降低其褐变率。CHEN等[53]发现100 ℃下处理淮山1 min能抑制淮山酶促褐变。漂烫处理也被用于抑制淮山褐变,SONG等[54]漂烫处理淮山5 min后,淮山PPO活性降低85%。热处理的温度和时间均会影响褐变控制效果,当热处理温度较低时,达到良好褐变抑制效果需要处理的时间较长;而温度适当升高,可缩短处理时间。

    除传统的加热漂烫处理外,加入乙醇等化学试剂对淮山进行熏蒸处理也能显著降低淮山褐变相关酶类的活性。FAN等[55]对鲜切牛腿淮山进行研究发现,乙醇熏蒸可以显著抑制苯丙氨酸解氨酶活性,延缓总酚的积累,减少总可溶性固形物的损失,减少丙二醛的产生,对比各种乙醇浓度后发现,200 µl/L乙醇熏蒸是抑制酶促褐变的最有效方法。孟一等[56]的研究证实了这一发现。

    热处理是一种传统的淮山褐变控制方法,适当提高温度可以缩短处理时间,提高褐变控制效率。在热处理同时,加入乙醇进行蒸煮在抑制褐变发生的同时能减少总可溶性固形物的损失,保持淮山品质。

    过去传统的果蔬保鲜护色剂中使用最为广泛的是亚硫酸盐,但由于亚硫酸盐会对人体造成一定的副作用,正在被其他抑制剂取代[57]。目前使用最多的抑制剂包括柠檬酸、抗坏血酸、异抗坏血酸、L-半胱氨酸等。JYOTHI等[58]使用低浓度的醋酸、柠檬酸处理淮山能很好的降低淮山褐变程度。TANG等[59]研究出鲜切淮山最佳复合保鲜液配方为1.5%柠檬酸+0.8%抗坏血酸+0.1% L-半胱氨酸+1.5% NaCl。MMUOASINAM等[60]证明抗坏血酸和2-巯基乙醇可以完全抑制PPO活性。故在控制淮山褐变时,多种化学抑制剂联合使用能显著提升褐变控制效果。

    淮山褐变控制除单一使用化学抑制剂外,还可结合物理方式进行处理。OLUWOLE等[61]在95 ℃下用食品级焦亚硫酸钠和0.5%抗坏血酸联合处理淮山7 min,较单独使用化学抑制剂可以提升淮山的PPO活性抑制效果。LI等[62]将淮山用抗坏血酸和氯化钙浸渍后再使用6.84 kJ/m2剂量的短波紫外线辐照(short-wave ultraviolet light,UV-C)处理,较单一使用抗坏血酸能更好地抑制淮山褐变。将传统的化学抑制剂同热处理、UV-C处理等物理方式结合使用,能提高化学抑制剂的使用效率,进而提升淮山褐变控制效果。

    除了传统的化学抑制剂,植物、微生物的提取液也被用来抑制淮山褐变。张莉会等[63]研究发现0.05 mmol/L的谷胱甘肽能抑制淮山褐变。王梅等[64]用0.3%大蒜素提取液处理鲜切淮山可延长其保鲜期9 d左右。谢冬娣等[65]将木瓜蛋白酶应用于抑制淮山褐变,抑制效果较好。李佩艳等[66]研究表明,3%草酸处理能降低淮山PPO活性、抑制贮藏后期酚类物质的增加,控制淮山酶促褐变。闫艳华[67]用茉莉酸甲酯和乙烯利处理鲜切淮山能抑制褐变发生。郑丽萍等[68]发现茶多酚是一种良好的天然淮山保鲜剂,并将其用于抑制淮山褐变。除植物提取液外,微生物提取液也被用于抑制淮山褐变。曾丽萍等[69]采用发酵时间为34 h、添加量为10%的产乳酸芽孢杆菌发酵液处理淮山1 h,抑制褐变效果最佳。故将植物、微生物的提取液用于抑制淮山褐变,对于淮山的品质保持有积极作用。

    除此之外,JIA等[70]的研究表明,电解氧化水(electrolyzed oxidizing water,EOW)是一种有益的淮山褐变抑制剂。具有抑制褐变功效的电生功能水可以代替自来水用于淮山清洗,从而可有效抑制清洗过程中淮山褐变。

    涂膜保鲜近年来在食品行业越来越受关注,涂膜保鲜在果实表面形成一层透明薄膜,抑制呼吸作用和水分蒸发,减少营养损耗,并能增加果实表面光泽,加之其方便、快捷、成本较低,是果蔬保鲜的理想方式[71]。现有的涂膜保鲜膜主要分为单一膜和复合膜两大类,已有被用于涂膜保鲜的材料有β-环糊精-牛至精油、淀粉/纳米TiO2、黄原胶、壳聚糖、卡拉胶、海藻酸钠等。

    单一膜已被广泛应用于淮山褐变控制,殷诚等[72]使用β-环糊精-牛至精油微胶囊涂层减缓鲜切紫玉淮山的褐变进程。HUANG等[73]研究证实并发现β-环糊精-牛至精油微胶囊在包合率55.14%时抑制紫玉淮山的褐变效果最佳。β-环糊精-牛至精油微胶囊在其自身缓释和柠檬酸促进其水解的情况下,会释放出牛至精油,牛至精油具有抗氧化性和抗菌性能,不仅能抑制鲜切紫玉淮山表面细菌的生长,而且还减缓了花青素、抗坏血酸等营养物质的氧化,在控制淮山褐变的同时,也能保证淮山的营养品质[74]。刘永等[75]用淀粉/纳米TiO2涂膜处理淮山样品有效抑制了淮山褐变,并且能保持鲜切淮山的品质,在鲜切淮山保鲜上具有潜在的应用价值。涂膜保鲜在淮山褐变控制应用中,除能有效的抑制淮山自身褐变外,其自身的优势还能增加淮山表面的光泽感,从而更好的体现褐变抑制效果。

    复合膜作为单一膜复合的产物,也被应用于抑制淮山褐变。ZHANG等[76]将淮山用羟丙基-β-环糊精(hydroxypropyl-beta-cyclodextrin,HPcD)包封含八角精油(star anise essential oil,SAEO)的黄原胶处理,较单一使用黄原胶处理对淮山褐变的抑制作用提高了近8倍,对多酚氧化酶活性的抑制作用提高了7倍以上。马利华等[77]将淮山样品用壳聚糖1.57%+卡拉胶0.9%+海藻酸钠1.55%的复合膜涂膜后,鲜切淮山的色泽比对照有很大提高,褐变程度比对照降低了61.48%,PPO酶比活力下降了23.6%,酚类物质含量比对照高11.69%。卡拉胶、壳聚糖和海藻酸钠涂膜材料性质不同,在功能上有互补性,将这3种涂膜剂材料共混成膜,可以改善可食膜综合性能[78]。杜运鹏等[79]通过溶液插层-流延成膜法,成功制备纳米复合薄膜用于抑制淮山褐变,用于增强薄膜性能的无机硅酸盐纳米材料有很多,对于多种无机硅酸盐的复配改性效果有更大的研究空间。抑制淮山褐变过程中,复合膜不仅能加强各组分间的相互作用,改善膜的透气性和保水性,而且显著抑制淮山褐变的同时保证淮山品质,因此复合膜更适合应用于实际生产。

    酶促褐变的发生必须有氧的参与,故制造一个隔绝氧的环境,能有效地抑制褐变。气调包装技术能在包装袋中形成一个理想的气体条件,从而减少淮山与氧的接触[80]。杨福馨等[81]采用聚乙烯和单向拉伸聚丙烯制成透气性的生物气调保鲜膜对去皮淮山进行护色,保鲜效果极佳。LUO等[82]的研究表明,用纳米CaCO3-LDPE包装淮山也可抑制鲜切淮山褐变,保持淮山品质。KO等[83]采用拉伸聚乙烯(oriented polypropylene,OPP)和聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)等低氧透气性包装材料处理淮山,有效降低了淮山粉和淮山切片的褐变。由于淮山气调包装过程极其复杂,同时准确测量相关工艺参数比较困难。虽然,目前的研究已经取得了一定成果,但理论基础尚不充分,特别是淮山呼吸、表面蒸发机理尚不清楚,今后研究可由此着手。

    控制体系氧气含量的同时,还可辅以化学褐变抑制剂来消耗部分氧气,从而达到控制淮山褐变的目的。GAO等[84]用25%乙醇和1%抗坏血酸浸泡处理鲜切淮山片,可使其感官品质保持7 d,而用改良的大气包装代替相同的清洗处理既能抑制褐变,能使质量保持14~21 d。气调保鲜在淮山褐变控制中能降低体系中氧气含量,并且能降低PPO等淮山褐变相关酶的活性,抑制褐变发生。在淮山贮藏期间,气调保鲜材料表面形成微孔,利用软包装材料内部的微孔调节氧气通过率,形成适合淮山贮藏的包装内环境,从而有效地抑制淮山褐变,进而延长淮山的保鲜贮运周期。

    微波处理技术虽为新型控制技术,但其原理为褐变三要素之一,控制褐变相关酶活性。微波处理能有效地抑制多酚氧化酶的活性,且能维持淮山的表面亮度及其原有的乳白色色泽,同时还能维持细胞膜的完整性,降低细胞液渗透率,从而降低整体褐变率[85]。微波功率不足会导致护色效果不显著,功率过高会引起产品营养损失,控制适当范围的微波功率尤为重要。蔡佳昂等[86]用微波功率300 W,微波时间80 s处理淮山使其褐变程度显著降低。

    微波处理与其他物理、化学方式结合能有效提升褐变控制效果,EKOW等[87]发现淮山在微波预处理5 min,温度70 ℃和热漂烫时间1 min条件下褐变程度最小。HORNUNG等[88]将淮山淀粉用NaClO、UV-C处理、微波三重改性也能抑制其褐变。目前,微波技术用于淮山褐变控制的效果易受各项参数影响,且目前参数设置还有待提升。但微波处理技术相对于传统漂烫方式更安全有效、方便可行,在抑制多酚氧化酶的同时,能保持细胞膜的完整性,从而保证淮山的品质,在淮山大规模生产方面具有广阔的市场前景。

    脉冲真空干燥技术作为新型控制技术,其用于控制淮山褐变不仅能隔绝氧气还可以降低PPO、POD等褐变相关酶活性。为了抑制淮山酶促褐变,通常采用真空干燥法进行干燥,然而,整个干燥过程均保持真空状态的成本很高,且淮山干燥过程中若长时间处于真空状态,物料内外水汽易达平衡状态,干燥速度较低。脉冲真空干燥,也被称为周期性或连续降压脱水,能在保持淮山色泽营养的前提下,最大限度地提高能源效率,是一种新型现代化干燥技术。XIE等[89]研究发现脉冲真空技术有助于抑制淮山片褐变。脉冲真空干燥技术作为一种高效节能的褐变控制技术,已被应用于淮山褐变控制,但其相关的加工处理参数还有待进一步确定。

    脉冲真空干燥不仅可以直接用于处理淮山样品,还可作为加工前处理过程,与微波冷冻干燥技术协同作用,用于淮山褐变抑制。李琳琳[90]对淮山进行脉冲真空渗透脱水预处理(pulsed vacuum osmotic dehydration,PVOD)再继以微波冷冻干燥处理,相对单一运用微波冷冻处理,干燥速率提高,且获得色泽良好的淮山。OSAE[91]运用脉冲真空干燥处理生姜获得最低的PPO、POD酶活力,进一步验证了脉冲真空干燥技术对于褐变控制有良好效果。脉冲真空技术与微波处理技术协同使用在控制淮山褐变的过程中能缩短前处理周期,提升褐变控制效率。

    超声处理通过高频震动破坏褐变相关酶的细胞结构,使得褐变相关酶无法参与褐变过程从而抑制褐变。超声处理是指运用振动频率在20 kHz的超声波具有的高频震动频率对食物进行处理,从而起到延长保质期的作用。杨明冠等[92]对马铃薯的研究表明超声处理对多酚氧化酶活性有抑制作用,由此推测超声波可能破坏了PPO的细胞结构,进而抑制褐变。BERNARDO等[93]对淮山块茎粉碎后的样品进行超声处理,验证了超声处理对于淮山褐变抑制的积极作用。

    超声处理同其他物理方法联合使用也被应用于淮山褐变控制中。CHITRAKAR等[94]研究表明超声波和微波的联合作用也能抑制淮山褐变,并且在较高的功率水平下效果更好。李琳琳[90]研究发现超声辅助盐溶液渗透脱水(ultrasound assisted osmosis,USOD)法联合微波冷冻干燥法抑制淮山褐变的效果比单一运用两种方式的效果更好。超声处理不仅可以抑制淮山褐变,并且由于超声处理的冷加工特性,可以避免因传统高温处理造成淮山营养和质地的破坏,因此超声处理是一种高效、可行的淮山褐变控制技术。

    超高压处理是一种冷加工保鲜技术,它能使酶分子聚合,钝化多酚氧化酶的活性,并且可以避免因热处理引起的淮山风味的改变和营养成分的损失。郭晓君等[95]用超高压微射流处理铁棍淮山汁,不仅降低了褐变速率,而且改善了其物理稳定性。虽然超高压技术的保鲜效果较好,但高压条件易导致淮山细胞变形,从而对淮山品质造成影响。韩文娥[96]将马铃薯丝进行超高压处理,PPO、POD、PAL酶活相对对照组均显著降低,虽然马铃薯质地普遍较硬,但是较薄的马铃薯片和较窄的马铃薯丝易受高压条件影响,一般不运用超高压处理对其进行护色。因此,运用超高压技术控制淮山褐变时,应注意控制淮山的形状大小,防止超高压技术对于淮山细胞造成影响,且超高压处理的参数研究尚不完善,需进一步确定超高压处理淮山的压强和时间。

    淮山加工及贮存过程中伴随的非酶褐变主要以美拉德反应为主。美拉德反应的机制复杂易受环境条件影响,其反应程度与pH、温度、含水量有密切关系。深入研究这些因素对美拉德反应的影响,有助于在食品生产中控制褐变的发生,提高产品质量和安全性。

    pH的高低会影响美拉德反应中氨基酸和糖的活性。一般随着pH升高,美拉德反应速率也呈升高趋势。在偏酸性条件下,美拉德反应的中间产物更容易被水解,使得反应速率降低[97]。袁媛等[98]发现随着反应pH的升高,反应物的颜色逐渐加深。JUNG等[99]将玉米片中加入0.2%的柠檬酸相比对照组褐变程度降低。

    温度也是影响淮山美拉德反应发生的重要条件,随着加工温度的上升美拉德反应速率加快。张月婷等[100]研究木瓜果脯美拉德反应发现,储藏温度越高,美拉德反应越剧烈,因此,适当降低温度有利于抑制美拉德反应。何秀丽[101]研究表明,油炸马铃薯片从120 ℃开始发生美拉德反应,随着温度的升高,美拉德褐变反应程度不断加深。温度的变化也会影响美拉德反应中间产物丙烯酰胺的生成,BECALSKI等[102]研究美拉德反应过程中丙烯酰胺的生成情况发现,结果表明丙烯酰胺的生成不会随温度升高而持续增加,温度升高到一定数值,丙烯酰胺的生成会达到峰值。因此,通过控制温度,能够有效的控制非酶促褐变程度外,还可以控制丙烯酰胺的产生。

    美拉德反应需要有一定水分存在的条件下才能发生。水在美拉德反应过程中,除作为反应物外,也可以作为溶剂和迁移载体[103]。含水量的高低也会影响美拉德反应中褐变反应程度,一般含水量高于10%时美拉德反应才能发生,且含水量在10%~25%的范围内,美拉德反应速率随含水量的增加而升高[104]

    故淮山的美拉德反应需要从pH、温度、含水量等方面进行控制。降低温度和pH能抑制美拉德反应的发生。目前,淮山美拉德反应控制技术研究较少,随着分析检测技术的飞速发展,气质、液质联用、傅里叶变换红外光谱、核磁共振等高效精密检测技术越来越广泛地应用于食品研究中。在美拉德反应的研究中,现代检测手段的运用使得实时监测反应过程中各成分变化、食品结构与组成物质间的相互作用成为可能,有助于深入了解美拉德反应的机理及途径,可作为今后的淮山褐变控制的研究方向之一。

    淮山褐变主要分为酶促褐变与非酶褐变,有效控制淮山褐变可保持淮山色泽和营养特性,延长其货架贮藏期,对保障其品质和提高消费者接受度具有重要意义。

    根据酶促褐变机理,现有的淮山酶促褐变控制方法包括保护酚类底物、抑制酶活性和隔绝氧气等。目前,酶促褐变控制技术还存在瓶颈,采用低成本的底物类似物替代酚类底物参与褐变反应的安全性还值得进一步研究,在确保酚类底物活性不被影响的基础上,利用基因工程手段将绿原酸参与褐变的基团改性切断酶促褐变反应的源头;拓展更多天然提取物应用于抑制淮山褐变相关酶活性;探索涂膜保鲜与多种保鲜技术的协同作用,研究开发活性包装、智能包装、抗菌包装用于隔绝氧气,为延长淮山的贮藏期和货架期提供更加安全有效的新型保鲜技术。此外,目前淮山焦糖化反应控制技术研究未见报道,根据焦糖化反应原理,控制淮山焦糖化反应可望从控制热处理的时间和温度以及降低单糖浓度方面入手。关于淮山美拉德褐变控制技术的研究目前尚停留于控制温度、pH等因素的阶段,有待进一步探明淮山非酶褐变产物生成的机理,以实现对其美拉德反应的调控,同时减少有害产物丙烯酰胺的生成,对于保持淮山品质,保护消费者健康具有重要意义。

  • 图  1   酶促褐变过程[31]

    Figure  1.   Enzymatic browning process[31]

  • [1] 刘露, 张雁, 魏振承, 等. 肠道益生菌体外发酵山药低聚糖产短链脂肪酸的研究[J]. 食品科学技术学报,2019,37(4):49−56. [LIU L, ZHANG Y, WEI Z C, et al. Study on production of short chain fatty acids from yam oligosaccharides byintestinal probiotics fermentation in vitro[J]. Journal of Food Science and Technology,2019,37(4):49−56. doi: 10.3969/j.issn.2095-6002.2019.04.007

    LIU L, ZHANG Y, WEI Z C, et al. Study on production of short chain fatty acids from yam oligosaccharides byintestinal probiotics fermentation in vitro[J]. Journal of Food Science and Technology, 2019, 37(4): 49-56. doi: 10.3969/j.issn.2095-6002.2019.04.007

    [2] 谢学军, 洪秋妹, 王书可. 中国山药产业发展情况调研报告[R]. 常州: 中国农业监测预警, 2020.

    XIE X J, HONG Q M, WANG S K. Chinese yam industry development research report[R]. Changzhou: China Agricultural Monitoring and Early Warning, 2020.

    [3]

    ZHAO L, WANG D, MA Y, et al. Yellow pigment formation, pigment composition, and quality of fresh-cut yam (Dioscorea opposita) slices[J]. Royal Society of Chemistry,2020,10:1104−1113.

    [4]

    WANG C, ZHANG X L, GAO Y, et al. Path analysis of non-enzymatic browning in Dongbei suancai during storage caused by different fermentation conditions[J]. Food Chemistry,2021,335:127620. doi: 10.1016/j.foodchem.2020.127620

    [5]

    OMIDIJI O, OKPUZOR J E, OTUBU O. The contribution of an ionic peroxidase isozyme to enzyme-mediated browning in Dioscorea esculenta L. tubers[J]. Pakistan Journal of Nutrition,2006,5(5):478−480. doi: 10.3923/pjn.2006.478.480

    [6] 朱军, 宋卫东, 杨宗渠, 等. 怀山药辐射贮藏保鲜技术与应用研究[J]. 食品科学,2009,30(2):272−274. [ZHU J, SONG W D, YANG Z Q, et al. Study on effects of 60Coγ radiation on physiological and biochemical properties of Huai Rhizoma dioscoreae[J]. Food Science,2009,30(2):272−274. doi: 10.3321/j.issn:1002-6630.2009.02.062

    ZHU J, SONG W D, YANG Z Q, et al. Study on effects of 60Coγ radiation on physiological and biochemical properties of Huai Rhizoma dioscoreae[J]. Food Science, 2009, 30(2): 272-274. doi: 10.3321/j.issn:1002-6630.2009.02.062

    [7] 廖晰晰. 淮山热加工中丙烯酰胺的形成及其控制研究[D]. 长沙: 湖南农业大学, 2016.

    LIAO X X. Study on the formation and control of acrylamide in yam hot processing[D]. Changsha: Agricultural University of Hunan, 2016.

    [8]

    INGRAHAM L L, CORSE J. Enzymatic browning of fruits. 1. autoxidation of chlorogenic acid[J]. Journal of The American Chemical Society,1951,73(12):5550−5553. doi: 10.1021/ja01156a010

    [9]

    GHEYSARBIGI S H, MIRDEHGHAN S H, GHASEMNE-ZHAD M, et al. The inhibitory effect of nitric oxide on enzymatic browning reactions of in-package fresh pistachios (pistacia vera L.)[J]. Postharvest Biology and Technology,2020,159:110998. doi: 10.1016/j.postharvbio.2019.110998

    [10]

    ROBARDS K, PRENZLER P D, TUCKER G, et al. Phenolic compounds and their role in oxidative processes in fruits[J]. Food Chemistry,1999,66(4):401−436. doi: 10.1016/S0308-8146(99)00093-X

    [11]

    LIU X, YANG Q, LU Y, et al. Effect of purslane (portulaca oleracea L.) extract on anti-browning of fresh-cut potato slices during storage[J]. Food Chemistry,2019,283:445−453. doi: 10.1016/j.foodchem.2019.01.058

    [12] 郁志芳, 彭贵霞, 夏志华, 等. 鲜切山药酶促褐变机理的研究[J]. 食品科学,2003,24(5):44−49. [YU Z F, PENG G X, XIA Z H, et al. Study on enzymatic browning mechanism of fresh-cut yam[J]. Food Science,2003,24(5):44−49. doi: 10.3321/j.issn:1002-6630.2003.05.007

    YU Z F, PENG G X, XIA Z H, et al. Study on enzymatic browning mechanism of fresh-cut yam[J]. Food Science, 2003, 24(5): 44-49. doi: 10.3321/j.issn:1002-6630.2003.05.007

    [13]

    XI Y, CHENG D, ZENG X, et al. Evidences for chlorogenic acid-a major endogenous polyphenol involved in regulation of ripening and senescence of apple fruit[J]. PLoS One 11,2016:e0146940.

    [14] 雷静, 廉苇佳, 陈雅, 等. 无核白绿葡萄干清洗前后酚类物质变化及其与酶促褐变的关系[J]. 新疆农业科学,2021,58(7):1316−1322. [LEI J, LIAN W J, CHEN Y, et al. Changes of phenolic substances in seedless white green raisins before and after cleaning and their relationship with enzymatic browning[J]. Xinjiang Agricultural Sciences,2021,58(7):1316−1322.

    LEI J, LIAN W J, CHEN Y, et al. Changes of phenolic substances in seedless white green raisins before and after cleaning and their relationship with enzymatic browning[J]. Xinjiang Agricultural Sciences, 2021, 58(7): 1316-1322.

    [15]

    NAOKI Y, MISUGI U, MIYUKI H. Low accumulation of chlorogenic acids represses reddening during flesh browning in Japanese peach “Okayama PEH7”[J]. Bioscience, Biotechnology, and Biochemistry,2017,81(1):147−152. doi: 10.1080/09168451.2016.1234926

    [16] 李彩云, 李洁, 严守雷, 等. 果蔬酶促褐变机理的研究进展[J]. 食品科学,2021,42(9):283−292. [LI C Y, LI J, YAN S L, et al. Progress in research on the mechanism of enzymatic browning in fruits and vegetables[J]. Food Science,2021,42(9):283−292. doi: 10.7506/spkx1002-6630-20200401-008

    LI C Y, LI J, YAN S L, et al. Progress in research on the mechanism of enzymatic browning in fruits and vegetables[J]. Food Science, 2021, 42(9): 283-292. doi: 10.7506/spkx1002-6630-20200401-008

    [17]

    SETH G A, SODAH A G, BETTY B A. Spatial distribution of total phenolic content, enzymatic activities and browning in white yam (Dioscorea rotundata) tubers[J]. Journal of Food Science and Technology,2014,51(10):2833−2838. doi: 10.1007/s13197-012-0760-6

    [18]

    FRONK P, HARTMANN H, BAUER M, et al. Polyphenoloxidase from Riesling and Dellornfelder wine grapes (Vitis vinifera) is a tyrosinase[J]. Food Chemistry,2015,183(5):49−57.

    [19] 高义霞, 周向军, 张继, 等. 山药过氧化物酶的特性及抑制研究研究[J]. 食品工业科技,2011,32(7):105−108. [GAO Y X, ZHOU X J, ZHANG J, et al. Study on properties and inhibitions of peroxidase from Dioscorea hemsleyi[J]. Food Industry Science and Technology,2011,32(7):105−108.

    GAO Y X, ZHOU X J, ZHANG J, et al. Study on properties and inhibitions of peroxidase from Dioscorea hemsleyi[J]. Food Industry Science and Technology, 2011, 32(7): 105-108.

    [20]

    PENG X Y, DU C, YU H Y, et al. Purification and characterization of polyphenol oxidase (PPO) from water yam (Dioscorea alata)[J]. CYTA-Journal of Food,2019,17(1):676−684. doi: 10.1080/19476337.2019.1634645

    [21]

    SAHIN E, COLAK A, YILDIRIM M, et al. Polyphenol oxidase potentials of three wildmushroom species harvested from liser high plateau, trabzon[J]. Food Chemistry,2007,103:1426−1433. doi: 10.1016/j.foodchem.2006.10.059

    [22]

    LI R, WANG Z S, WANG X L, et al. Characterization of polyphenol oxidase from Jipicao yam[J]. Journal of Food Biochemistry,2015,39(2):173−178. doi: 10.1111/jfbc.12117

    [23]

    ZHANG W J, SHEN Y X, LI Z D, et al. Effects of high hydrostatic pressure and thermal processing on anthocyanin content, polyphenol oxidase and β-glucosidase activities, color, and antioxidant activities of blueberry (Vaccinium spp.) puree[J]. Food Chemistry,2021,342:128564. doi: 10.1016/j.foodchem.2020.128564

    [24]

    LUENGWILAI K, BECKLES D M, IRIPHANICH J. Postharvest internal browning of pineapple fruit originates at the phloem[J]. Journal of Plant Physiology,2016,202:121−133. doi: 10.1016/j.jplph.2016.07.011

    [25]

    COELHO J L F, FERREIRA S S L, MARCOS R S V, et al. Darkening, damage and oxidative protection are stimulated in tissues closer to the yam cut, attenuated or not by the environment[J]. Journal of the Science of Food and Agriculture,2019,99(1):334−342. doi: 10.1002/jsfa.9192

    [26]

    YUN Z, GAO H J, CHEN X, et al. Effects of hydrogen water treatment on antioxidant system of litchi fruit during the pericarp browning[J]. Food Chemistry,2021,336:127618. doi: 10.1016/j.foodchem.2020.127618

    [27]

    GATARIRA C, AGRE P, MATSUMOTO R, et al. Genome-wide association analysis for tuber dry matter and oxidative browning in water yam[J]. Plants,2020,9:969. doi: 10.3390/plants9080969

    [28]

    GUADARRAMA V S, VELOZ S C, VALDIVIA P C, et al. Skin permeance and internal gas composition in‘Hass’avocado (Persea americana mill.) fruits[J]. Food Science and Technology International,2002,8(6):365−373.

    [29]

    LAMMERTYN J, SCHEERLINCK N, JANCSÓK P V, et al. A respiration-diffusion model for‘conference’pears i: Model development and validation[J]. Postharvest Biology and Technology,2003,30(1):29−42. doi: 10.1016/S0925-5214(03)00061-9

    [30]

    AHOUAGI V B, MEQUELION D B, TAVANO O L, et al. Physicochemical characteristics, antioxidant activity, and acceptability of strawberry-enriched ketchup sauces[J]. Food Chemistry,2021,340:127925. doi: 10.1016/j.foodchem.2020.127925

    [31]

    QUAN W, WU Z L, JIAO Y, et al. Exploring the relationship between potato components and Maillard reaction derivative harmful products using multivariate statistical analysis[J]. Food Chemistry,2021,339:127853. doi: 10.1016/j.foodchem.2020.127853

    [32]

    MAILLARD L C. Identifying of a 'new' acidosis coefficient (Lanzenberg) with the ureogenic imperfection index (Maillard)[J]. Comptes Rendus Des Seances De La Societe De Biologie Et De Ses Filiales,1912,73:421−424.

    [33]

    KANZLER C, HAASE P. Melanoidins formed by heterocyclic Maillard reaction intermediates via aldol reaction and michael addition[J]. Journal of Agricultural and Food Chemistry,2020,68:332−339. doi: 10.1021/acs.jafc.9b06258

    [34]

    CHU F L, YAYLAYAN V A. Post-schiff base chemistry of the maillard reaction: Mechanism of imine isomerization[J]. Annals of the New York Academy of Sciences,2008,1126:30−37. doi: 10.1196/annals.1433.041

    [35] 金成, 章宇, 陆柏益, 等. 食品中Maillard反应伴生化学危害物的形成机制与控制技术研究[J]. 中国食品学报,2011,11(9):170−175. [JIN C, ZHANG Y, LU B Y, et al. Advanced research of formation mechanism and control technology of Maillard reaction derived chemical hazards[J]. Journal of Chinese Institute of Food Science and Technology,2011,11(9):170−175. doi: 10.3969/j.issn.1009-7848.2011.09.017

    JIN C, ZHANG Y, LU B Y, et al. Advanced research of formation mechanism and control technology of Maillard reaction derived chemical hazards[J]. Journal of Chinese Institute of Food Science and Technology, 2011, 11(9): 170-175. doi: 10.3969/j.issn.1009-7848.2011.09.017

    [36]

    MOTTRAM D S, WEDZICHA B L, DODSON A T. Acrylamide is formed in the Maillard reaction[J]. Nature,2002,419:448−449. doi: 10.1038/419448a

    [37] 邵澜媛, 周建伟, 刘东红. 食品中美拉德反应机理及动力学模型的研究进展[J]. 中国食品学报,2012(12):103−112. [SHAO L Y, ZHOU J W, LIU D H. Research status on mechanism and kinetic modeling of Maillard reaction[J]. Journal of Chinese Institute of Food Science and Technology,2012(12):103−112.

    SHAO L Y, ZHOU J W, LIU D H. Research status on mechanism and kinetic modeling of Maillard reaction[J]. Journal of Chinese Institute of Food Science and Technology, 2012(12): 103-112.

    [38]

    ROSIN M P, STICH H F, POWRIE W D, et al. Induction of mitotic gene conversion by browning reaction products and its modulation by naturally occurring agents[J]. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis,1982,101(3):189−197.

    [39]

    ZHAO G, GAO Q, HADIATULLAH H, et al. Effect of wheat bran steam explosion pretreatment on flavors of nonenzymatic browning products[J]. Food Science and Technology,2021,135:110026.

    [40]

    PEPA L S, RODRÍGUEZ S D, SANTOS F C, et al. Interpretation of the color due to the ubiquitous nonenzymatic browning phenomena in foods[J]. Color Research & Application,2020,46(2):446−455.

    [41]

    GRACE M H, YOUSEF G G, Gustafson S J, et al. Phytochemical changes in phenolics, anthocyanins, ascorbic acid, and carotenoids associated with sweetpotato storage and impacts on bioactive properties[J]. Food Chemistry,2014,145:717−724. doi: 10.1016/j.foodchem.2013.08.107

    [42] 冯程程, 于筠, 王春玲. 不同贮藏温度下鲜切紫甘薯褐变相关因素研究[J]. 食品工业科技,2020,41(6):244−249. [FENG C C, YU J, WANG C L. Browning related factors of fresh-cut purple sweet potato under different storage temperatures[J]. Food Industry Science and Technology,2020,41(6):244−249.

    FENG C C, YU J, WANG C L. Browning related factors of fresh-cut purple sweet potato under different storage temperatures[J]. Food Industry Science and Technology, 2020, 41(6): 244-249.

    [43] 韩涛, 李丽萍. 果树多酚氧化酶的抑制及褐变的防治因素[J]. 北京农学院学报,1999,14(4):88−93. [HAN T, LI L P. Inhibition of polyphenol oxidase in fruit trees and prevention and control factors of browning[J]. Journal of Beijing Agricultural College,1999,14(4):88−93. doi: 10.3969/j.issn.1002-3186.1999.04.018

    HAN T, LI L P. Inhibition of polyphenol oxidase in fruit trees and prevention and control factors of browning[J]. Journal of Beijing Agricultural College, 1999, 14(4): 88-93. doi: 10.3969/j.issn.1002-3186.1999.04.018

    [44] 王礼群, 刘硕, 杨春贤. 鲜切甘薯不同部位褐变机理差异[J]. 食品科学,2018,39(1):285−290. [WANG L Q, LIU S, YANG C X. Mechanism of browning in different parts of fresh-cut sweet potato[J]. Food Science,2018,39(1):285−290. doi: 10.7506/spkx1002-6630-201801043

    WANG L Q, LIU S, YANG C X. Mechanism of browning in different parts of fresh-cut sweet potato[J]. Food Science, 2018, 39(1): 285-290. doi: 10.7506/spkx1002-6630-201801043

    [45]

    GACCHE R N, WARANGKAR S C, GHOLE V S. Glutathione and cinnamic acid: Natural dietary components used in preventing the process of browning by inhibition of polyphenol oxidasein apple juice[J]. Enzyme Inhib Med Chem,2004,19(2):175−179. doi: 10.1080/14756360310001640472

    [46]

    YANG R, TIAN J, LIU Y Q, et al. Interaction mechanism of ferritin protein with chlorogenic acid and iron ion: The structure, iron redox, and polymerization evaluation[J]. Food Chemistry,2021,349:129144. doi: 10.1016/j.foodchem.2021.129144

    [47] 孙蕊, 郭蓓, 李慧, 等. 曲酸对鲜切山药色泽及相关生理变化的影响[J]. 中国食品学报,2014,14(1):184−191. [SUN R, GUO B, LI H, et al. Role of kojic acid in color related physiological parameters in fresh-cut Chinese yam[J]. Journal of Food Science and Technology,2014,14(1):184−191.

    SUN R, GUO B, LI H, et al. Role of kojic acid in color related physiological parameters in fresh-cut Chinese yam[J]. Journal of Food Science and Technology, 2014, 14(1): 184-191.

    [48]

    RICHARD F F C, GOUPY P M, NICOLAS J J, et al. Cystein as an inhibiter of enzymatic browning isolation and characterization of addition compounds formed during oxidation of phenolics by apple polyphenol oxidase[J]. J Agric Food Chem,1991,39:481−487.

    [49] 沈金玉, 黄家音, 李晓莉. 果蔬酶促褐变机理及其抑制方法研究进展[J]. 食品研究与开发,2005,26(6):150−155. [SHEN J Y, HUANG J Y, LI X L. Research progress on mechanism of enzymatic browning of fruits and vegetables and its inhibition methods[J]. Food Research and Development,2005,26(6):150−155. doi: 10.3969/j.issn.1005-6521.2005.06.048

    SHENG J Y, HUANG J Y, LI X L. Research progress on mechanism of enzymatic browning of fruits and vegetables and its inhibition methods[J]. Food Research and Development, 2005, 26(6): 150-155. doi: 10.3969/j.issn.1005-6521.2005.06.048

    [50] 陈媛媛. 鲜切山药保鲜技术的研究[D]. 天津: 天津科技大学, 2019.

    CHEN Y Y. Study on fresh-keeping technology of fresh-cut yam[D]. Tianjing: Tianjin University of Science and Technology, 2019.

    [51] 范文广, 王庆国, 毛春芳. 热处理控制鲜切山药褐变研究[J]. 食品与发酵科技,2009,45(2):38−41. [FANG W G, WANG Q G, MAO C F. Study on control of browning of fresh-cut yam by heat treatment[J]. Food and Fermentation Technology,2009,45(2):38−41. doi: 10.3969/j.issn.1674-506X.2009.02.011

    FANG W G, WANG Q G, MAO C F. Study on control of browning of fresh-cut yam by heat treatment[J]. Food and Fermentation Technology, 2009, 45(2): 38-41. doi: 10.3969/j.issn.1674-506X.2009.02.011

    [52]

    COULIBALY A, DEGBEU K C, BEKOIN A P M, et al. Browning prevention and sensory evaluation of frozen yam slices (Dioscorea cayenensis-rotundata cv Kponan) of Côte d’ivoire[J]. Asian Food Science Journal,2019:1−10.

    [53]

    CHEN X T, LU J, LI X, et al. Effect of blanching and drying temperatures on starch-related physicochemical properties, bioactive components and antioxidant activities of yam flours[J]. Food Science and Technology,2017,82:303−310.

    [54]

    SONG K, KO E, KIM C, et al. Effect of treating and blanching on qualities preservation of packaged fresh-cut yam[J]. Korean Journal of Packaging Science & Technology,2015,21(3):115−120.

    [55]

    FAN W G, CAO Y Y, REN H W, et al. Effects of ethanol fumigation on inhibiting fresh-cut yam enzymatic browning and microbial growth[J]. Journal of Food Processing and Preservation,2018,42(2):e13434. doi: 10.1111/jfpp.13434

    [56] 孟一, 王甜甜, 张帆, 等. 不同处理对先切山药品质的影响[J]. 安徽农业科学,2020,48(7):198−201. [MENG Y, WANG T T, ZHANG F, et al. Effects of different treatments on quality of first cut yam[J]. Anhui Agricultural Sciences,2020,48(7):198−201. doi: 10.3969/j.issn.0517-6611.2020.07.057

    MENG Y, WANG T T, ZHANG F, et al. Effects of different treatments on quality of first cut yam[J]. Anhui Agricultural Sciences, 2020, 48(7): 198-201. doi: 10.3969/j.issn.0517-6611.2020.07.057

    [57]

    TAO N, WANG R H, XU X, et al. Xanthosine is a novel anti-browning compound in potato identified by widely targeted metabolomic analysis and in vitro test[J]. Postharvest Biology and Technology,2021,111:367−171.

    [58]

    JYOTHI G, KRISHNAN G, PADMAJA S N. Effect of pre-soaking treatments on the nutritional profile and browning index of sweet potato and yam flours[J]. Innovative Food Science & Emerging Technologies,2010,11(2):387−393.

    [59]

    TANG J L, CHEN Y Y, CHENG D, et al. Effect of compound preservation liquid on color protection and preservation off resh-cut yam[J]. Food and Fermentation Industries,2020,46(3):212−220.

    [60]

    MMUOASINAM B C, OJIMELUKWE P C, BEDE E N. Partial purification and characterization of polyphenol oxidase from water yam (Dioscorea alata)[J]. World Journal of Biochemistry and Molecular Biology,2018,3(1):22−30.

    [61]

    OLUWOLE O, ODEDIRAN O, ALAGBE G, et al. Polyphenol oxidase activity and inhibition in white yam (Dioscorea rotundata. var. laasirin) chips as African fries for human consumption[J]. Journal of Food Science and Engineering,2016,6(1):43−50.

    [62]

    LI S T, OLA L, NORANIZAN M A, et al. The effect of combinations of UV-C exposure with ascorbate and calcium chloride dips on the enzymatic activities and total phenolic content of minimally processed yam slices[J]. Postharvest Biology and Technology,2016,82:138−144.

    [63] 张莉会, 乔宇, 廖李, 等. 不同酶抑制剂对控制鲜切山药褐变的研究[J]. 食品工业,2018,39(10):82−86. [ZHANG L H, QIAO Y, LIAO L, et al. Study on control of browning of fresh-cut yam by different enzyme inhibitors[J]. The Food Industry,2018,39(10):82−86.

    ZHANG L H, QIAO Y, LIAO L, et al. Study on control of browning of fresh-cut yam by different enzyme inhibitors[J]. The Food Industry, 2018, 39(10): 82-86.

    [64] 王梅, 徐俐, 汤静, 等. 大蒜素提取液对鲜切山药保鲜效果的影响[J]. 中国酿造,2016,38(8):142−147. [WANG M, XU L, TANG J, et al. Effect of allicin extract on preservation of fresh-cut yam[J]. China Brewing,2016,38(8):142−147. doi: 10.11882/j.issn.0254-5071.2016.08.032

    WANG M, XU L, TANG J, et al. Effect of allicin extract on preservation of fresh-cut yam[J]. China Brewing, 2016, 38(8): 142-147. doi: 10.11882/j.issn.0254-5071.2016.08.032

    [65] 谢冬娣, 李丹梅, 龚振维. 木瓜蛋白酶复合剂抑制淮山酶促褐变的应用[J]. 江苏农业科学,2017,45(24):156−160. [XIE D D, LI D M, GONG Z W. Application of papain compound to inhibit enzymatic browning of Huaishan[J]. Jiangsu Agricultural Sciences,2017,45(24):156−160.

    XIE D D, LI D M, GONG Z X. Application of papain compound to inhibit enzymatic browning of Huaishan[J]. Jiangsu Agricultural Sciences, 2017, 45(24): 156-160.

    [66] 李佩艳, 党东阳, 尹飞. 草酸对鲜切山药贮藏保鲜的影响[J]. 河南农业科学,2020,49(7):168−173. [LI P Y, DANG D Y, YIN F. Effects of oxalic acid on storage and preservation of fresh-cut yam[J]. Henan Agricultural Sciences,2020,49(7):168−173.

    LI P Y, DANG D Y, YIN F. Effects of oxalic acid on storage and preservation of fresh-cut yam[J]. Henan Agricultural Sciences, 2020, 49(7): 168-173.

    [67] 闫艳华. MeJA和乙烯利对鲜切山药伤害防御的响应[J]. 食品工业,2020,41(11):124−127. [YAN Y H. Stress defense response to methyl jasmonate (MeJA) and ethephon for cold storage fresh-cut Chinese yam[J]. The Food Industry,2020,41(11):124−127.

    YAN Y H. Stress defense response to methyl jasmonate (MeJA) and ethephon for cold storage fresh-cut Chinese yam[J]. The Food Industry, 2020, 41(11): 124-127.

    [68] 郑丽萍, 王皓, 李玉玲, 等. 鲜切山药保鲜剂开发及应用效果研究[J]. 中州大学学报,2020,37(4):120−124. [ZHENG L P, WANG H, LI Y L, et al. Study on the development and application effect of fresh-cut Chinese yam preservative[J]. Journal of Zhongzhou University,2020,37(4):120−124.

    ZHENG L P, WANG H, LI Y L, et al. Study on the development and application effect of fresh-cut Chinese yam preservative[J]. Journal of Zhongzhou University, 2020, 37(4): 120-124.

    [69] 曾丽萍, 田文妮, 夏雨, 等. 产乳酸芽孢杆菌发酵液对山药护色及多糖免疫活性的影响[J]. 食品研究与开发,2019,40(8):44−51. [ZENG L P, TIAN W N, XIA Y, et al. Optimization of a fermented color-protective agent by Bacillus sp. and its effect on immunomodulatory activity of polysaccharide for Dioscorea opposita Thunb[J]. Food Research and Development,2019,40(8):44−51. doi: 10.3969/j.issn.1005-6521.2019.08.008

    ZENG L P, TIAN W N, XIA Y, et al. Optimization of a fermented color-protective agent by Bacillus sp. and its effect on immunomodulatory activity of polysaccharide for Dioscorea opposita Thunb[J]. Food Research and Development, 2019, 40(8): 44-51. doi: 10.3969/j.issn.1005-6521.2019.08.008

    [70]

    JIA G L, SHI J Y, SONG Z H, et al. Prevention of enzymatic browning of Chinese yam (Dioscorea spp.) using electrolyzed oxidizing water[J]. Journal of Food Science,2015,80(4):18−28.

    [71]

    AMIDROR‚ HERSCH R D. Neugebauer and demichel: Dependence and independence in n-screen superpositions for colour printing[J]. Colour Research and Application,2000,25:267−277. doi: 10.1002/1520-6378(200008)25:4<267::AID-COL7>3.0.CO;2-M

    [72] 殷诚, 黄崇杏, 王健, 等. 可食微胶囊涂层对鲜切紫玉淮山抗褐变效果研究[J]. 包装工程,2019,40(21):7−14. [YIN C, HUANG C X, WANG J, et al. Anti-browning effect of edible microcapsule coating on fresh-cut purple yam[J]. Packaging Engineering,2019,40(21):7−14.

    YIN C, HUANG C X, WANG J, et al. Anti-browning effect of edible microcapsule coating on fresh-cut purple yam[J]. Packaging Engineering, 2019, 40(21): 7-14.

    [73]

    HUANG H H, HUANG C X, YING C, et al. Preparation and characterization of β-cyclodextrin-oregano essential oil microcapsule and its effect on storage behavior of purple yam[J]. Journal of Food Science of Food and Agriculture,2020,100(13):4849−4857. doi: 10.1002/jsfa.10545

    [74] 林清华, 刘波, 徐有为, 等. 牛至挥发油对肠炎常见菌的体外抗菌作用[J]. 应用与环境生物学报,1997,3(1):76−78. [LIN Q H, LIU B, XU Y W, et al. In vitro antibacterial activity of volatile oil from oregano on common enteritis bacteria[J]. Journal of Applied and Environmental Biology,1997,3(1):76−78. doi: 10.3321/j.issn:1006-687X.1997.01.016

    LIN Q H, LIU B, XU Y W, et al. In vitro antibacterial activity of volatile oil from oregano on common enteritis bacteria[J]. Journal of Applied and Environmental Biology, 1997, 3(1): 76-78. doi: 10.3321/j.issn:1006-687X.1997.01.016

    [75] 刘永, 蔡俊莲, 梁楚彬, 等. 淀粉/纳米TiO2涂膜对鲜切山药保鲜效果的研究[J]. 食品工业,2016,37(9):112−114. [LIU Y, CAI J L, LIANG C B, et al. Effect of starch/nano-TiO2 coating on preservation of fresh-cut yam[J]. The Food Industry,2016,37(9):112−114.

    LIU Y, CAI J L, LIANG C B, et al. Effect of starch/nano-TiO2 coating on preservation of fresh-cut yam[J]. The Food Industry, 2016, 37(9): 112-114.

    [76]

    ZHANG G J, GUO L B, LU Z F, et al. Browning control of fresh-cut Chinese yam by edible coatings enriched with an inclusion complex containing star anise essential oil[J]. RSC Advances,2019,9(9):5002−5008. doi: 10.1039/C8RA08295B

    [77] 马利华, 秦卫东, 陈学红, 等. 涂膜处理对鲜切山药褐变及抗氧化性的影响[J]. 食品科学,2012,33(18):275−280. [MA L H, QIN W D, CHEN X H, et al. Effect of coating on browning and antioxidant activity of fresh-cut yam[J]. Food Science,2012,33(18):275−280.

    MA L H, QIN W D, CHEN X H, et al. Effect of coating on browning and antioxidant activity of fresh-cut yam[J]. Food Science, 2012, 33(18): 275-280.

    [78] 庞杰, 谢建华, 张甫生, 等. 可食性葡甘聚糖复合抑菌膜及其应用研究[J]. 农业工程学报,2004,20(3):157−162. [PANG J, XIE J H, ZHANG F S, et al. Study on edible glucomannan compound bacteriostatic membrane and its application[J]. Transactions of the Chinese Society of Agricultural Engineering,2004,20(3):157−162. doi: 10.3321/j.issn:1002-6819.2004.03.038

    PANG J, XIE J H, ZHANG P S, et al. Study on edible glucomannan compound bacteriostatic membrane and its application[J]. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(3): 157-162. doi: 10.3321/j.issn:1002-6819.2004.03.038

    [79] 杜运鹏, 杨福馨, 陈基玉, 等. 山药中多酚氧化酶的活性测定及其护色研究[J]. 包装工程,2017,38(1):179−182. [DU Y P, YANG F X, CHEN J Y, et al. Preservation and color-protection of fresh-cut yam[J]. Packaging Engineering,2017,38(1):179−182.

    DU Y P, YANG F X, CHEN J Y, et al. Preservation and color-protection of fresh-cut yam[J]. Packaging Engineering, 2017, 38(1): 179-182.

    [80]

    ZHOU D D, HUANG Y M, TU K. Effect of konjac glucomannan coating on antioxidant capacity and phenolic metabolism in fresh-cut lotus roots[J]. Journal of Food Processing and Preservation,2018,42(9):e13759. doi: 10.1111/jfpp.13759

    [81] 杨福馨, 李绍菁, 陈晨伟, 等. 去皮山药的护色保鲜包装研究[J]. 食品研究与开发,2019,11(2):45−51. [YANG F X, LI S J, CHEN C W, et al. Study on color preserving and fresh-keeping package of peeled yam[J]. Food Research and Development,2019,11(2):45−51. doi: 10.3969/j.issn.1674-7100.2019.02.007

    YANG F X, LI S J, CHEN C W, et al. Study on color preserving and fresh-keeping package of peeled yam[J]. Food Research and Development, 2019, 11(2): 45-51. doi: 10.3969/j.issn.1674-7100.2019.02.007

    [82]

    LUO Z S, WANG Y S, JIANG L, et al. Effect of nano-CaCO3-LDPE packaging on quality and browning of fresh-cut yam[J]. LWT,2015,60(2):1155−1161. doi: 10.1016/j.lwt.2014.09.021

    [83]

    KO E, SHIM W, KIM C, et al. A study on comparison of the quality changes powder yam and sliced yams[J]. Korean Journal of Packaging Science & Technology,2016,22(2):27−32.

    [84]

    GAO J, ZHU Y Q, LUO F Y. Effects of ethanol combined with ascorbic acid and packaging on the inhibition of browning and microbial growth in fresh-cut Chinese yam[J]. Food Science and Nutrition,2018,6(4):998−1005. doi: 10.1002/fsn3.647

    [85]

    OROZCO G, SAMPEDRO J G, MORENO A, et al. In situ inactivation of polyphenol oxidase in mamey fruit (Pouteria sapota) by microwave treatment[J]. Journal of Food Science,2012,77(4):359−365. doi: 10.1111/j.1750-3841.2012.02632.x

    [86] 蔡佳昂, 匡世瑶, 张敏. 微波对鲜切山药护色及品质的保持[J]. 食品与发酵工业,2019,45(19):138−143. [CAI J A, KUANG S Y, ZHANG M. The preservation of color and quality of fresh-cut yam by microwave[J]. Food and Fermentation Industries,2019,45(19):138−143.

    CAI J A, KUANG S Y, ZHANG M. The preservation of color and quality of fresh-cut yam by microwave[J]. Food and Fermentation Industries, 2019, 45(19): 138-143.

    [87]

    EKOW A E, SARPONG A R. Microwave and blanch-assisted drying of white yam (Dioscorea rotundata)[J]. Food Science & Nutrition,2015,3(6):586−596.

    [88]

    HORNUNG P S, BARBI R C T, TEIXEIRA G L, et al. Brazilian amazon white yam (Dioscorea sp.) starch[J]. Journal of Thermal Analysis and Calorimetry,2018,134(3):2075−2088. doi: 10.1007/s10973-018-7353-1

    [89]

    XIE Y C, GAO Z J, LIU Y H, et al. Pulsed vacuum drying of rhizoma dioscoreae slices[J]. LWT-Food Science and Technology,2017(80):237−249.

    [90] 李琳琳. 脉冲喷东协同微波冷冻干燥山药[D]. 无锡: 江南大学, 2019.

    LI L L. Pulse spraying and microwave freeze-drying of yam[D]. Wuxi: Jiangnan University, 2019.

    [91]

    OSAE R. Effect of different non-thermal pretreatment techniques and drying methods on bioactive phytochemicals, quality attributes, drying kinetics and physicochenmical properties of Ginger (Zingiber officinale Roscoe)[D]. Wuxi: Jiangnan University, 2020.

    [92] 杨明冠, 朱传合. 超声处理抑制鲜切马铃薯酶促褐变的机理研究[J]. 农产品加工,2016(6):1−5. [YANG M G, ZHU C H. Study on the mechanism of inhibiting enzymatic browning of fresh-cut potato by ultrasonic treatment[J]. Farm Products Processing,2016(6):1−5.

    YANG M G, Zhu C H. Study on the mechanism of inhibiting enzymatic browning of fresh-cut potato by ultrasonic treatment[J]. Farm Products Processing, 2016(6): 1-5.

    [93]

    BERNARDO C O, ASCHERI J L R, CHAVEZ D W H, et al. Ultrasound assisted extraction of yam (Dioscorea bulbifera) starch: Effect on morphology and functional properties[J]. Starch-Starke,2018,70:5−6.

    [94]

    CHITRAKAR B, ZHANG M, FAN D C. The synergistic effect of ultrasound and microwave on the physical, chemical, textural, and microstructural properties of vacuum fried Chinese yam (Dioscorea polystachya)[J]. Jounal of Food Progress and Preservation,2019,43(9):e14073.

    [95] 郭晓君, 纵伟, 赵光远, 等. 超高压微射流对铁棍山药物理稳定性的影响[J]. 食品工业科技,2016,37(17):125−133. [GUO X J, ZONG W, ZHAO G Y, et al. Effect of high pressure microfluidization (HPM) on the physical stability of yam juice[J]. Science and Technology of Food Industry,2016,37(17):125−133.

    GUO X J, ZONG W, ZHAO G Y, et al. Effect of high pressure microfluidization (HPM) on the physical stability of yam juice[J]. Science and Technology of Food Industry, 2016, 37(17): 125-133.

    [96] 韩文娥. 超高压处理对鲜切马铃薯品质影响的研究[D]. 呼和浩特: 内蒙古农业大学, 2016.

    HAN W E. Effect of ultra-high pressure treatment on quality of fresh-cut potato[D]. Hohhot: Inner Mongolia Agricultural University, 2016.

    [97] 唐乐攀, 杨小洪, 余爱农. 抗坏血酸/半胱氨酸体系Maillard反应形成风味物质动力学[J]. 食品科学,2015,36(27):27−32. [TANG L P, YANG X H, YU A N. Kinetic study of volatile favor compound formation in ascorbic acid-cysteine Maillard reaction system[J]. Food Science,2015,36(27):27−32.

    TANG L P, YANG X H, YU A N. Kinetic study of volatile favor compound formation in ascorbic acid-cysteine Maillard reaction system[J]. Food Science, 2015, 36(27): 27-32.

    [98] 袁媛, 刘野. 葡萄糖/天冬酰胺模拟体系中丙烯酞胺的产生及其机理研究[J]. 中国食品学报,2006,1(6):1−5. [YUAN Y, LIU Y. Study on the formation mechanism of acrylamide in model system of glucose and asparagine[J]. Journal of Food Science and Technology,2006,1(6):1−5. doi: 10.3969/j.issn.1009-7848.2006.06.001

    YUAN Y, LIU Y. Study on the formation mechanism of acrylamide in model system of glucose and asparagine[J]. Journal of Food Science and Technology, 2006, 1(6): 1-5. doi: 10.3969/j.issn.1009-7848.2006.06.001

    [99]

    JUNG D Y, PARK D H, KIM Y H, et al. Dual eneantion selective diels-alder process in the cyclization of chiral acrylamide with dienes[J]. Journal of Physical Chemisty,2004,8:828.

    [100] 张月婷, 陈中, 林伟锋. 控制木瓜果脯非酶褐变的研究[J]. 食品工业科技,2014,35(2):255−258. [ZHANG Y T, CHEN Z, LIN W F. Study on control of non-enzymatic browning of papaya candied fruit[J]. Science and Technology of Food Industry,2014,35(2):255−258.

    ZHANG Y T, CHEN Z, LIN W F. Study on control of non-enzymatic browning of papaya candied fruit[J]. Science and Technology of Food Industry, 2014, 35(2): 255-258.

    [101] 何秀丽. 油炸马铃薯片中丙烯酰胺形成的影响因素的研究[J]. 食品科技,2007,3:54−58. [HE X L. Study on influence factor on acrylamide formation during frying of potato crisps[J]. Food Science and Technology,2007,3:54−58. doi: 10.3969/j.issn.1005-9989.2007.07.015

    HE X L. Study on influence factor on acrylamide formation during frying of potato crisps[J]. Food Science and Technology, 2007, 3: 54-58. doi: 10.3969/j.issn.1005-9989.2007.07.015

    [102]

    BECALSKI A, LAU P Y B, LEWIS D, et al. Acrylamide in foods: Occurrence, sources, and modeling[J]. Journal of Agricultural and Food Chemistry,2003,51:802−808. doi: 10.1021/jf020889y

    [103]

    WEGENER S, KAUFMANN M, KROH L W. Influence of I-pyroglutamic acid on the color formation process of non-enzymatic browning reactions[J]. Food Chemistry,2017,232:450−454. doi: 10.1016/j.foodchem.2017.04.046

    [104]

    PHAM H T T, KITYO P, BUVE C, et al. Influence of pH and composition on nonenzymatic browning of shelf-stable orange juice during storage[J]. Journal of Agricultural and Food Chemistry,2020,68(19):5402−5411. doi: 10.1021/acs.jafc.9b07630

  • 期刊类型引用(7)

    1. 刘冀黔,旦正杰,韩丽娟,桂林生,侯生珍,王志有,杨葆春. 不同月龄黑藏羊肉品质及风味评价分析. 饲料研究. 2024(13): 105-111 . 百度学术
    2. 宁舒娴,曾金秀,沙小梅,丁红秀. 不同生境来源的鳙鱼肉挥发性物质组成比较分析. 食品工业科技. 2024(18): 265-272 . 本站查看
    3. 董平,范文教,朱开宪,吴华昌,邓静. 不同复热方式对咸烧白风味的影响. 食品科技. 2023(02): 122-129 . 百度学术
    4. 陈方雪,邓祎,谌玲薇,李冬生,乔宇,吴文锦,熊光权,汪兰,李新,石柳,丁安子. 预制冷风风干武昌鱼干制过程中的品质变化及香气形成. 现代食品科技. 2023(02): 9-17 . 百度学术
    5. 张蓝月,孙万成,罗毅皓. 基于气相色谱-离子迁移谱分析不同地区羊肉的挥发性风味化合物. 食品与发酵工业. 2023(10): 265-272 . 百度学术
    6. 火玉明,柯汉杰,吴晨昕,姜红贺,梁鹏,汪晴,陈小辉. 海鲈鱼鱼松加工工艺研究. 食品安全质量检测学报. 2022(10): 3367-3374 . 百度学术
    7. 戴振庭,周惠敏,殷泽生,周瑜,陈舜胜. 添加植物油对鲣鱼鱼松滋味的影响. 甘肃农业大学学报. 2022(06): 227-234 . 百度学术

    其他类型引用(5)

图(1)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  30
  • PDF下载量:  20
  • 被引次数: 12
出版历程
  • 收稿日期:  2021-07-18
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-06-30

目录

/

返回文章
返回
x 关闭 永久关闭