• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
柯梁建,卢秀圆,王兴权,等. 介质阻挡放电低温等离子体降解水中吡虫啉、啶虫脒和三唑磷的研究[J]. 食品工业科技,2022,43(7):262−272. doi: 10.13386/j.issn1002-0306.2021060277.
引用本文: 柯梁建,卢秀圆,王兴权,等. 介质阻挡放电低温等离子体降解水中吡虫啉、啶虫脒和三唑磷的研究[J]. 食品工业科技,2022,43(7):262−272. doi: 10.13386/j.issn1002-0306.2021060277.
KE Liangjian, LU Xiuyuan, WANG Xingquan, et al. Degradation of Imidacloprid,Acetamiprid and Triazophos in Aqueous Solution by Dielectric Barrier Discharge Low-Temperature Plasma[J]. Science and Technology of Food Industry, 2022, 43(7): 262−272. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060277.
Citation: KE Liangjian, LU Xiuyuan, WANG Xingquan, et al. Degradation of Imidacloprid,Acetamiprid and Triazophos in Aqueous Solution by Dielectric Barrier Discharge Low-Temperature Plasma[J]. Science and Technology of Food Industry, 2022, 43(7): 262−272. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060277.

介质阻挡放电低温等离子体降解水中吡虫啉、啶虫脒和三唑磷的研究

Degradation of Imidacloprid,Acetamiprid and Triazophos in Aqueous Solution by Dielectric Barrier Discharge Low-Temperature Plasma

  • 摘要: 为探究介质阻挡放电低温等离子体对吡虫啉、啶虫脒和三唑磷的降解作用,本研究构建水模拟体系,研究放电电压、时间、农药初始浓度和pH等因素对三种农药降解效果的影响,分析降解动力学,并在鉴定降解产物的基础上分析农药的降解途径。结果表明:低温等离子体能够有效降解水模拟体系中的三种农药残留;相同条件下,三种农药的降解率依次为:三唑磷>吡虫啉>啶虫脒;在本研究条件下,提高放电电压、延长放电时间、降低农药初始浓度有利于提高三种农药的降解率;碱性条件更有利于吡虫啉和啶虫脒的降解,而酸性条件更有利于三唑磷的降解;当放电电压为13.6 kV、时间5 min、农药浓度为1.9 mg/L时,吡虫啉、啶虫脒和三唑磷的降解率达到最大值,分别为62.5%(pH9.0)、42.4%(pH9.0)和94.5%(pH3.0);低温等离子体作用下三种农药的降解符合一级动力学模型(R2≥0.90);分别鉴定出吡虫啉和啶虫脒的降解产物各7种、5种;吡虫啉和啶虫脒降解产物的形成主要经历了分子中C-H、C-N等键的断裂和羟基自由基氧化取代的过程。

     

    Abstract: In order to explore the degradation of imidacloprid, acetamiprid and triazophos by dielectric barrier discharge low-temperature plasma, the aqueous solution was established to study the effects of the discharge voltage, discharge time, initial pesticide concentration and pH of solution on degradation. The degradation kinetics model was also analyzed and the degradation path was proposed based on the degradation products identification. The results showed that the low-temperature plasma technology could effectively degrade the three pesticide residues in the aqueous solution and triazophos was much more labile to low-temperature plasma treatment than imidacloprid and acetamiprid. Under the conditions of this study, the increase of discharge voltage and discharge time, and the decrease of initial pesticides concentration benefitted the increase of degradation rate. Alkaline conditions were conducive to the degradation of imidacloprid and acetamiprid, and acidic conditions benefitted the degradation of triazophos. The maximum degradations rates were 62.5% for imidacloprid (pH9.0), 42.4% for acetamiprid (pH9.0) and 94.5% for triazophos (pH3.0) after the treatment at 13.6 kV for 5 min at the initial concentration of 1.9 mg/L. The degradation kinetics of all pesticides were fitted to the first-order kinetics model well (R2≥0.90). Seven and five degradation products of imidacloprid and acetamiprid were identified respectively. The formation of imidacloprid and acetamiprid degradation products mainly experienced the breaking of C-H, C-N bonds and the oxidation and substitution of hydroxyl radicals.

     

/

返回文章
返回