NIR Combined with Linear Regression Algorithm for Rapid Prediction of Dry Matter and Weight in Wheat Grain
-
Abstract: In order to realize simultaneous and rapid nondestructive detection of wheat quality (dry matter, weight), 35 wheat varieties samples were subjected to near-infrared (NIR) system scanning, and the spectral information were acquired and pretreated by three methods including Gaussian filtering smoothing (GFS), normalize (N) and baseline correction (BC), respectively. Partial least squares (PLS) algorithm was adopted to build a quantitative relationship between spectra and reference value of dry matter and weight, respectively. Two methods such as regression coefficients (RC) and successive projections algorithm (SPA) were applied to select optimal wavelengths from the full 900~1700 nm range for PLS model optimization. Based on the selected optimal wavelengths, PLS and multiple linear regression (MLR) prediction models were built respectively. The results indicated that the RC-RAW-PLS models based on 20 optimal wavelengths selected from RAW spectra by RC method had better performance in dry matter prediction, with rP of 0.93 and RMSEP of 0.03%. The SPA-RAW-MLR model built with 12 optimal wavelengths selected from RAW spectra by SPA method had better performance in weight prediction, with rP of 0.89 and RMSEP of 0.32 g. In conclusion, NIR spectroscopy combined with PLS and MLR algorithm could be used for rapid prediction of dry matter and weight in wheat grain.
-
Keywords:
- near-infrared (NIR) /
- wheat /
- partial least square (PLS) /
- dry matter /
- weight
摘要: 为了实现小麦品质(干物质、重量)的快速无损检测,对35个小麦品种样品进行了近红外系统扫描,获取光谱信息,并进行高斯滤波平滑(GFS)、归一化(N)和基线校正(BC)预处理。采用偏最小二乘(PLS)算法分别建立光谱信息与干物质和重量参考值之间的定量关系。采用回归系数法(RC)和连续投影算法(SPA)两种方法在900~1700 nm范围内选择最优波长对全波段PLS模型进行优化。基于选择的最优波长,分别建立PLS和MLR预测模型。结果表明,基于RC法从RAW光谱中筛选出的20个最佳波长构建的RC-RAW-PLS模型对干物质有较好的预测性能,rP为0.93,RMSEP为0.03%。基于SPA法从RAW光谱中选取的12个最优波长建立的SPA-RAW-MLR模型对重量有较好的预测性能,rP为0.89,RMSEP为0.32 g。综上所述,近红外光谱结合PLS和MLR算法可分别用于小麦籽粒干物质和重量的快速预测。 -
Table 1 Reference values of dry matter and weight in wheat grain
Index Sample set Number of sample Minimum Maximum Mean Standard deviation Dry matter Calibration 97 98.61% 99.00% 98.89% 0.08 Prediction 48 98.66% 98.99% 98.89% 0.07 Weight Calibration 87 17.91 g 21.50 g 19.37 g 0.70 Prediction 43 18.03 g 20.84 g 19.34 g 0.67 Table 2 Dry matter and weight prediction by PLS models based on full NIR wavelength
Index Spectra Model Number of
wavelengthsLatent
variablesCalibration Cross-validation Prediction ∆E rC RMSEC rCV RMSECV rP RMSEP RPD Dry
matterGFS GFS-PLS 400 9 0.96 0.02% 0.92 0.03% 0.92 0.03% 2.33 0.01 N N-PLS 400 8 0.96 0.02% 0.93 0.03% 0.91 0.03% 2.33 0.01 BC BC-PLS 400 9 0.96 0.02% 0.92 0.03% 0.91 0.03% 2.33 0.01 RAW RAW-PLS 400 9 0.96 0.02% 0.93 0.03% 0.91 0.03% 2.33 0.01 Weight GFS GFS-PLS 400 5 0.82 0.46 g 0.76 0.52 g 0.72 0.51 g 1.49 0.05 N N-PLS 400 4 0.82 0.45 g 0.75 0.54 g 0.74 0.49 g 1.63 0.04 BC BC-PLS 400 5 0.82 0.45 g 0.75 0.53 g 0.74 0.50 g 1.43 0.05 RAW RAW-PLS 400 5 0.82 0.45 g 0.75 0.53 g 0.73 0.50 g 1.60 0.05 Table 3 Results of optimal wavelengths selected by RC and SPA methods for dry matter prediction
Spectra Wavelength selection method Number of full wavelength The specific
optimal wavelengthsNumber of optimal wavelengths Wavelength reduction(%) Raw RC 400 920.03, 971.72, 1056.56, 1065.30, 1135.56, 1209.00, 1217.31, 1324.34,
1438.18, 1461.00, 1520.78, 1596.41, 1645.73, 1661.58, 1673.39,
1677.30, 1682.19, 1685.12, 1692.91 and 1697.76 nm20 95 SPA 400 901.76, 1107.40, 1203.05, 1682.19 and 1690.96 nm 5 99 GFS RC 400 912.21, 922.64, 926.54, 935.62, 967.87, 1009.98, 1108.63, 1122.12, 1127.01,
1130.68, 1205.43, 1326.62, 1327.76, 1381.89, 1401.91, 1631.76, 1647.72,
1650.7, 1663.55, 1678.28, 1684.15, 1692.91, 1693.88 and 1699.69 nm24 94 SPA 400 958.87, 1680.24, 1697.76, 1699.69, and 1700.66 nm 5 99 N RC 400 938.21, 956.30, 974.29, 1015.05, 1023.90, 1091.37, 1175.51, 1213.75,
1324.34, 1405.23, 1610.62, 1634.76, 1673.39 and 1692.91 nm14 97 SPA 400 910.91, 1192.30, 1205.43, 1324.34, 1395.25, 1682.19, 1685.12,
1692.91 and 1697.76 nm9 98 BC RC 400 908.30, 910.91, 912.21, 960.16, 967.87, 971.72, 1007.44, 1021.37, 1085.18, 1091.37,
1107.40, 1119.67, 1124.57, 1213.75, 1324.34, 1326.62, 1610.62, 1619.71, 1629.75,
1673.39, 1677.30, 1690.96, 1692.91, 1693.88, and 1697.76 nm25 94 SPA 400 1203.05, 1461.00, 1690.96, 1692.91 and 1695.82 nm 5 99 Table 4 Results of optimal wavelengths selected by RC and SPA methods for weight prediction
Spectra Wavelength selection method Number of full wavelength The specific
optimal wavelengthsNumber of optimal wavelengths Wavelength reduction
(%)RAW RC 400 908.30, 922.64, 931.73, 947.27, 1061.56, 1217.31, 1257.34, 1260.85, 1358.35, 1397.47, 1445.81, 1498.54, 1620.71, 1626.74, 1645.73, 1673.39, 1680.24, 1682.19, 1689.02, 1697.76 and 1699.69 nm 21 95 SPA 400 901.76, 1093.84, 1319.77, 1450.16, 1613.65, 1678.28, 1680.24, 1682.19,
1685.12, 1687.07, 1689.02 and 1699.69 nm12 97 GFS RC 400 903.07, 1152.57, 1156.21, 1158.63, 1161.05, 1162.25, 1180.32, 1225.6, 1230.32, 1258.51, 1269.01, 1293.35, 1322.06, 1624.74, 1638.76, 1675.35, 1680.24 and 1682.19 nm 18 96 SPA 400 901.76, 1096.31, 1198.28, 1458.83, 1615.67, 1680.24, 1682.19, 1684.15, 1685.12, 1687.07, 1690.96 and 1700.66 nm 12 97 N RC 400 905.68, 908.3, 910.91, 914.82, 917.43, 922.64, 931.73, 940.8, 947.27, 997.28, 1003.63, 1009.98, 1021.37, 1036.5, 1050.30, 1061.56, 1082.7, 1090.13, 1096.31, 1098.78, 1102.47, 1108.63, 1397.47, 1626.74, 1689.02, 1697.76 and 1699.69 nm 27 93 SPA 400 901.76, 1236.22, 1463.16, 1678.28, 1685.12, 1689.02, 1692.91 and 1699.69 nm 8 98 BC RC 400 922.64, 929.13, 940.8, 1023.9, 1061.56, 1211.38, 1327.76, 1376.31, 1445.81, 1498.54,
1624.74, 1626.74, 1645.73, 1654.66, 1673.39, 1678.28, 1684.15, 1689.02, 1693.88,
1695.82, 1697.76 and 1699.69 nm22 95 SPA 400 901.76, 1061.56, 1399.69, 1481.45, 1636.76, 1675.35, 1678.28, 1682.19, 1685.12,
1689.02, 1690.96 and 1697.76 nm12 97 Table 5 Dry matter and weight prediction by PLS models based on optimal wavelengths
Index Wavelengths
selection methodModel Number of optimal
wavelengthsCalibration Cross validation Prediction ∆E rC RMSEC rCV RMSECV rP RMSEP RPD Dry matter RC RC-GFS-PLS 24 0.93 0.03% 0.83 0.04% 0.93 0.03% 2.33 0.00 RC-N-PLS 14 0.93 0.03% 0.91 0.03% 0.88 0.04% 1.75 0.01 RC-BC-PLS 25 0.73 0.05% 0.55 0.06% 0.71 0.05% 1.40 0.00 RC-RAW-PLS 20 0.94 0.02% 0.89 0.03% 0.93 0.03% 2.33 0.01 SPA SPA-GFS-PLS 5 − − − − − − − − SPA-N-PLS 9 0.91 0.03% 0.89 0.03% 0.87 0.04% 1.75 0.01 SPA-BC-PLS 5 0.49 0.07% 0.39 0.07% 0.54 0.06% 1.17 0.01 SPA-RAW-PLS 5 0.55 0.06% 0.46 0.07 % 0.47 0.07% 1.13 0.01 Weight RC RC-GFS-PLS 18 0.88 0.33 g 0.75 0.46 g 0.50 0.57 g 1.18 0.24 RC-N-PLS 27 0.90 0.31 g 0.85 0.37 g 0.74 0.45 g 1.49 0.14 RC-BC-PLS 22 0.87 0.34 g 0.79 0.43 g 0.74 0.44 g 1.52 0.10 RC-RAW-PLS 21 0.91 0.28 g 0.87 0.34 g 0.69 0.48 g 1.40 0.20 SPA SPA-GFS-PLS 12 0.90 0.31 g 0.85 0.37 g 0.81 0.38 g 1.76 0.07 SPA-N-PLS 8 0.85 0.36 g 0.82 0.41 g 0.84 0.36 g 1.86 0.00 SPA-BC-PLS 12 0.88 0.33 g 0.84 0.38 g 0.78 0.42 g 1.60 0.09 SPA-RAW-PLS 12 0.89 0.32 g 0.85 0.37 g 0.81 0.39 g 1.72 0.07 Table 6 Dry matter and weight prediction by MLR models based on optimal wavelengths
Index wavelengths
selection methodModel Number of optimal
wavelengthsCalibration Cross validation Prediction ∆E rC RMSEC rCV RMSECV rP RMSEP RPD Dry
matterRC RC-GFS-MLR 24 0.94 0.03% 0.82 0.04% 0.84 0.04% 1.75 0.01 RC-N-MLR 14 0.94 0.03% 0.88 0.04% 0.88 0.04% 1.75 0.01 RC-BC-MLR 25 0.95 0.02% 0.89% 0.04% 0.86 0.04% 1.75 0.02 RC-RAW-MLR 20 0.94 0.03% 0.87 0.04% 0.91 0.03% 2.33 0.00 SPA SPA-GFS-MLR 5 ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ SPA-N-MLR 9 0.91 0.03% 0.89 0.03% 0.87 0.04% 1.75 0.01 SPA-BC-MLR 5 0.50 0.07% 0.33 0.07% 0.53 0.06% 1.17 0.01 SPA-RAW-MLR 5 0.57 0.06% 0.46 0.07% 0.47 0.07% 1.13 0.01 Weight RC RC-GFS-MLR 18 0.88 0.33 g 0.74 0.47 g 0.46 0.58 g 1.16 0.25 RC-N-MLR 27 0.92 0.27 g 0.77 0.44 g 0.60 0.53 g 1.26 0.26 RC-BC-MLR 22 0.90 0.31 g 0.71 0.49 g 0.67 0.45 g 1.49 0.14 RC-RAW-MLR 21 0.92 0.27 g 0.84 0.38 g 0.68 0.48 g 1.40 0.21 SPA SPA-GFS-MLR 12 0.90 0.31 g 0.85 0.37 g 0.87 0.33 g 2.03 0.02 SPA-N-MLR 8 0.85 0.36 g 0.80 0.41 g 0.84 0.36 g 1.86 0.00 SPA-BC-MLR 12 0.89 0.32 g 0.84 0.38 g 0.77 0.42 g 1.60 0.10 SPA-RAW-MLR 12 0.89 0.32 g 0.84 0.37 g 0.89 0.32 g 2.09 0.00 Table 7 Comparison of optimal prediction results of dry matter and weight value of wheat grain by PLS and MLR mode
Index wavelengths
selection methodModel Number of optimal
wavelengthsCalibration Cross validation Prediction ∆E rC RMSEC rCV RMSECV rP RMSEP RPD Dry
matterRC RC-RAW-PLS 20 0.94 0.02% 0.89 0.03% 0.93 0.03% 2.33 0.01 RC RC-RAW-MLR 20 0.94 0.03% 0.87 0.04% 0.91 0.03% 2.33 0.00 weight SPA
SPASPA-N-PLS 8 0.85 0.36 g 0.82 0.41 g 0.84 0.36 g 1.86 0.00 SPA-RAW-MLR 12 0.89 0.32 g 0.84 0.37 g 0.89 0.32 g 2.09 0.00 -
[1] HE Z H, ZHUANG Q S, CHENG S H, et al. Wheat industry development and scientific and technological progress in China[J]. Journal of Agronomy,2018,8(1):99−106.
[2] WEI Z Y, SI Z F, WANG Y. Detection of wheat protein content based on near-infrared diffuse reflectance spectroscopy[J]. Science and Technology of Light Industry,2018,34(5):41−42,57.
[3] PANDEY P, SRIVASTAVA S, HARI N M. Comparison of FT-NIR and NIR for evaluation of phyisco-chemical properties of stored wheat grains[J]. Food Quality and Safety,2018,2(3):165−172. doi: 10.1093/fqsafe/fyy015
[4] PASHA I, ANJUM F M, MORRIS C F. Grain hardness: a major determinant of wheat quality[J]. Food Science & Technology International,2010,16(6):511−522.
[5] YANG L, SUN M, LIN W, et al. Effects of population structure on soil water consumption and biomass production in dryland wheat[J]. Chinese Journal of Ecology,2021,40(5):1356−1365.
[6] KLEIJER G, LEVY L, SCHWAERZEI R, et al. Relationship between test weight and several quality parameters in wheat[J]. Revue Suisse Dagriculture,2007,39(6):305−309.
[7] HELGERUD T, SEGTNAN V H, WOLD J P, et al. Near-infrared spectroscopy for rapid estimation of dry matter content in whole unpeeled potato tubers[J]. Journal of Food Research,2012,1(4):55−65. doi: 10.5539/jfr.v1n4p55
[8] HAO L I, CAO X Y, SONG J M, et al. Effects of spikelet and grain positions on grain weight and protein content of different wheat varieties[J]. Acta Agronomica Sinica,2017,43(2):238−252. doi: 10.3724/SP.J.1006.2017.00238
[9] ZHU M T, LONG Y, CHEN Y, et al. Fast determination of lipid and protein content in green coffee beans from different origins using NIR spectroscopy and chemometrics[J]. Journal of Food Composition and Analysis,2021(2):104055.
[10] WOLD J P, O'FARRELL M, ANDERSEN P V, et al. Optimization of instrument design for in-line monitoring of dry matter content in single potatoes by NIR interaction spectroscopy[J]. Foods,2021,10(4):828. doi: 10.3390/foods10040828
[11] HEMAN A, HSIEH C L. Measurement of moisture content for rough rice by visible and Near-Infrared (NIR) spectroscopy[J]. Engineering in Agriculture Environment & Food,2016,9(3):280−290.
[12] FERREIRA D S, PALLONE J A, Poppi R J. Fourier transform near-infrared spectroscopy (FT-NIRS) application to estimate Brazilian soybean [Glycine max (L. ) Merril] composition[J]. Food Research International,2013,51(1):53−58. doi: 10.1016/j.foodres.2012.09.015
[13] QIU G, ENLI L, LU H, et al. Single-Kernel FT-NIR spectroscopy for detecting supersweet corn (Zea mays L. Saccharata Sturt) seed viability with multivariate data analysis[J]. Sensors,2018,18(4):1010. doi: 10.3390/s18041010
[14] KAMARANGA H S, SCOTT R, BEAN S R, et al. Moisture effects on robustness of sorghum grain protein near-infrared spectroscopy calibration[J]. Cereal Chemistry,2019,96(4):678−688. doi: 10.1002/cche.10164
[15] ZHAO H, GUO B, WEI Y, et al. Near infrared reflectance spectroscopy for determination of the geographical origin of wheat[J]. Food Chemistry,2013,138(2-3):1902−1907. doi: 10.1016/j.foodchem.2012.11.037
[16] LI X. Study on the influence of water content and grain size on the accuracy of fourier NIR prediction model for maize and wheat[D]. Sichuan Agricultural University, 2006.
[17] SHI H, YU P. Comparison of grating-based near-infrared (NIR) and fourier transform mid-infrared (ATR-FT/MIR) spectroscopy based on spectral preprocessing and wavelength selection for the determination of crude protein and moisture content in wheat[J]. Food Control,2017,82(5):57−58.
[18] ANDRÁS S, SZILVESZTER G. Analysis of wheat grain development using NIR spectroscopy[J]. Journal of Cereal Science,2012,56(1):31−38. doi: 10.1016/j.jcs.2012.04.011
[19] JI Y M, SUN H. Establishment of Near-infrared spectrum analysis model for main quality indexes of wheat[J]. Food Research and Development,2017,38(21):142−145.
[20] HE H J, WANG Y L, QIAO H, et al. Rapid and non-contact evaluation of water content in wheat by long-wave near-infrared spectra[J]. Journal of Hainan Normal University (Natural Science),2019,32(1):26−32. doi: 10.1080/01431161.2010.519003
[21] ZHAI Y, CUI L, ZHOU X, et al. Estimation of nitrogen, phosphorus, and potassium contents in the leaves of different plants using laboratory-based visible and near-infrared reflectance spectroscopy: comparison of partial least-square regression and support vector machine regression methods[J]. International Journal for Remote Sensing,2013,34(7):2502−2518. doi: 10.1080/01431161.2012.746484
[22] KOTILAINEN J K, FALOMO R. Near-infrared imaging of the host galaxies of intermediate redshift steep spectrum radio quasars[J]. Astronomy & Astrophysics,2000,364(1):70−82.
[23] QI L U, CHEN C, PENG Z Q. Application of adaptive filter to noninvasive biochemical examination by near infrared spectroscopy[J]. Optics & Precision Engineering,2012,20(4):873−879.
[24] CAO B, LI H, FAN M, et al. Determination of pesticides in a flour substrate by chemometric methods using terahertz spectroscopy[J]. Analytical Methods,2018,10(42):5097−5104. doi: 10.1039/C8AY01728J
[25] WANG J, SMITS E, BOOM R M, et al. Arabinoxylans concentrates from wheat bran by electrostatic separation[J]. Journal of Food Engineering,2015,155(6):29−36.
[26] SU P F, ZHANG P F, ZHANG W G, et al. Establishment of near infrared rapid analysis model for moisture of barley, wheat and pea[J]. Brewery Science and Technology,2021(3):31−34.
[27] TIAN X, WANG Q, LI J, et al. Non-destructive prediction of soluble solids content of pear based on fruit surface feature classification and multivariate regression analysis[J]. Infrared Physics & Technology,2018,92(6):336−344.
[28] BUONDONNO A, AMENTA P, VISCARRA-ROSSEL R A, et al. Prediction of soil properties with PLSR and vis-NIR spectroscopy: Application to mediterranean soils from southern italy[J]. Current Analytical Chemistry,2012,8(2):283−299. doi: 10.2174/157341112800392571
[29] QIN T J, LIU D, CONG Y L, et al. Determination of moisture, fat, carbohydrate and protein content of flour by near infrared spectroscopy[J]. Science and Technology of Food Industry,2020,41(12):256−263.
[30] DAI X, HANG S, WEN L, et al. On-line UV-NIR spectroscopy as a process analytical technology (PAT) tool for on-line and real-time monitoring of the extraction process of coptis rhizome[J]. Rsc Advances,2016,6(12):10078−10085. doi: 10.1039/C5RA23688F
[31] CHENG J H, JIN H, LIU Z. Developing a NIR multispectral imaging for prediction and visualization of peanut protein content using variable selection algorithms[J]. Infrared Physics & Technology,2018,88:92−96.
[32] BAO Y, KONG W, YONG H, et al. Quantitative analysis of total amino acid in barley leaves under herbicide stress using spectroscopic technology and chemometrics[J]. Sensors,2012,12(10):13393−13401. doi: 10.3390/s121013393
[33] WANG H, HE H, MA H, et al. LW-NIR hyperspectral imaging for rapid prediction of TVC in chicken flesh[J]. International Journal of Agricultural and Biological Engineering,2019,12(3):180−186. doi: 10.25165/j.ijabe.20191203.4444
[34] LESTANDER T A, LEARDI R, GELADI P. Selection of Near infrared wavelengths using genetic algorithms for the determination of seed moisture content[J]. Journal of Near Infrared Spectroscopy,2003,11(6):433−446. doi: 10.1255/jnirs.394
[35] HE H J, WANG Y L, QIAO H, et al. NIR spectra method for rapid prediction of dry matter content in wheat grain[J]. Journal of Hainan Normal University (Natural Science),2019,32(1):33−38.
-
期刊类型引用(4)
1. XUE Hang,XU Xiping,MENG Xiang. Variety classification and identification of maize seeds based on hyperspectral imaging method. Optoelectronics Letters. 2025(04): 234-241 . 必应学术
2. 贾文珅,吕浩林,张上,秦英栋,周巍. 利用便捷式可见-近红外光谱仪和机器学习分辨霉变小麦及霉变程度. 智慧农业(中英文). 2024(01): 89-100 . 百度学术
3. 杨龙涛,尚玮瑶,万子龙,杨海兴,张国斌. 化肥减量配施生物有机肥对露地西葫芦产量、品质和养分分配的影响. 甘肃农业大学学报. 2024(02): 64-73 . 百度学术
4. 周昊宇,朱倩莹,钟玉鸣,刘袆帆,谢曦,肖更生,马路凯,刘东杰,王琴. 基于线性回归分析法预测李果实干制后果干糖酸比. 食品安全质量检测学报. 2023(20): 200-208 . 百度学术
其他类型引用(4)