• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

一测多评法测定羊肚菌中17种氨基酸的含量

杨慧丽, 杜莹, 汪建文, 梁光斐, 伍庆, 岑锐, 洪江

杨慧丽,杜莹,汪建文,等. 一测多评法测定羊肚菌中17种氨基酸的含量[J]. 食品工业科技,2021,42(21):294−302. doi: 10.13386/j.issn1002-0306.2021020100.
引用本文: 杨慧丽,杜莹,汪建文,等. 一测多评法测定羊肚菌中17种氨基酸的含量[J]. 食品工业科技,2021,42(21):294−302. doi: 10.13386/j.issn1002-0306.2021020100.
YANG Huili, DU Ying, WANG Jianwen, et al. Determination of Seventeen Amino Acids in Morchella Esculenta by Quantitative Analysis of Multi-Components by Single-Marker Method[J]. Science and Technology of Food Industry, 2021, 42(21): 294−302. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020100.
Citation: YANG Huili, DU Ying, WANG Jianwen, et al. Determination of Seventeen Amino Acids in Morchella Esculenta by Quantitative Analysis of Multi-Components by Single-Marker Method[J]. Science and Technology of Food Industry, 2021, 42(21): 294−302. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020100.

一测多评法测定羊肚菌中17种氨基酸的含量

基金项目: 贵州省科技计划羊肚菌人工栽培外援营养的优化及应用研究项目(黔科合支撑[2019]2338)
详细信息
    作者简介:

    杨慧丽(1997−),女,硕士,研究方向:药用植物的开发与利用,E-mail:1710740705@qq.com

    通讯作者:

    岑锐(1977−),男,本科,初级,研究方向:天然产物开发,E-mail:qr_mail@163.com

    洪江(1970−),女,硕士,副研究员,研究方向:生物资源科学研究,E-mail:347966925@qq.com

  • 中图分类号: TS255.1

Determination of Seventeen Amino Acids in Morchella Esculenta by Quantitative Analysis of Multi-Components by Single-Marker Method

  • 摘要: 目的:建立以谷氨酸为内参物,同时测定羊肚菌中17种氨基酸含量的一测多评法。方法:采用高效液相色谱,以乙腈-乙酸铵水溶液为流动相,梯度洗脱,以谷氨酸为内参物,建立其与其他16种氨基酸的相对校正因子(RCF),并用相对校正因子计算16种氨基酸的含量;同时采用内标法对羊肚菌中17种氨基酸进行测定,比较一测多评法与内标法结果的差异,并对方法耐用性进行考察。结果:17种氨基酸在线性范围内线性关系良好,线性相关系数R2>0.9990,平均加标回收率在92.42%~101.16%之间,RSD在0.25%~1.94%,在不同实验条件下重现性良好(RSD<2.0%);一测多评法和内标法测定结果的对比分析,无显著性差异(P>0.05)。在不同色谱柱、色谱体系中的相对校正因子、相对保留时间的RSD均小于2.0%,耐用性良好。结论:本文建立的一测多评法简单易操作,结果准确,节约了测定成本,为羊肚菌中氨基酸的测定提供了一种新的模式,为羊肚菌的质量评价提供有价值的参考。
    Abstract: Objective: To establish a quantitative analysis of multi-components by single-marker (QAMS) with using glutamic acid as the internal reference, the content of 17 amino acids in Morchella esculenta was determined simultaneously. Methods: High performance liquid chromatography (HPLC) was used with acetonitrile-ammonium acetate aqueous solution as mobile phase, gradient elution and glutamic as the internal reference substance was used to establish its relative correction factors (RCF) of other 16 amino acids. The content of 17 amino acids in Morchella esculenta was calculated by using the relative correction factor. Internal standard method was used to determine 17 amino acids in Morchella esculenta. The validity of the QAMS method was evaluated by comparison of the quantitative results of both methods and to validate the durability of this method. Results: The 17 amino acids had a great linear relationship in the linear range, and the correlation coefficients higher than 0.9990, the average recovery rate of 17 amino acids were in the range of 92.42%~101.16%, and the relative standard deviations (RSD) were in the range of 0.25%~1.94%, and reproducibility was good in different experimental conditions (RSD<2.0%); through the comparative analysis of determination results of QAMS and the internal standanrd method, the two methods had no significant difference (P>0.05). The RCF and the relative retention time RSD in different chromatographic columns and chromatographic systems all less than 2.0%, and the durability was good. Conclusion: This method is simple, easy to operate, accurate and can save the cost of content determination. It can be used as a new model for the determination of amino acid content in Morchella esculenta, and can also provide a valuable reference for the quality evaluation of Morchella esculenta.
  • 羊肚菌(Morchella esculenta) 是四大名贵食用菌之一,因其菌盖表面有许多不规则凹陷且多有褶皱,状似羊肚而得名,主要分布于云南、贵州、青海、西藏等地[1-7]。羊肚菌肉质鲜美,风味独特,营养丰富,富含蛋白质、矿物质、多糖等物质,具有提升免疫力、抗癌等功效[8-11]。氨基酸作为蛋白质的基本组成单元和人体的所需营养成分,具有多种不同的生理功能[12],能判断食品的营养价值,同样也关联和影响食品的风味,是食品质量评价的重要指标,所以羊肚菌中氨基酸的含量是衡量羊肚菌品质优劣的重要指标[13-16]

    在国家标准GB/T 5009.124-2016中,测定氨基酸采用外标法[17],吴素蕊[18]、张航[19]、黄世群[20]等对羊肚菌氨基酸的研究多数均采用外标法,但该方法不能消除实验中的误差以及标准品与待测样品之间的基体差异所导致的基质效应,对实验结果的准确度有一定影响[21-24];内标法由于内标物质和待测组分来自同一基体,当实验条件发生非人为变化时,两者会受到相同影响,消除了系统误差,使分析更加准确[25-26]。为了更好地评价羊肚菌的品质,需对羊肚菌中氨基酸的含量进行全面、准确的控制,但检测物质较多,成本过高且耗时过长。QAMS法通过测定一个成分而实现多个成分的同步测定,大幅度降低成本和实验人员的工作量[27-38],比传统质量控制方法更加经济、高效、简单。

    本研究采用一测多评法测定羊肚菌中17种氨基酸的含量,并对云南、新疆、贵州等6个不同地区的羊肚菌测定研究,本文为衡量羊肚菌的食用价值和品质优劣提供了科学依据, 为羊肚菌的开发利用指明了方向。

    羊肚菌 采集于新疆伊犁州、云南丽江市、贵州剑河县、贵州铜仁市万山区、贵州贵阳市长坡岭森林公园、贵州贵阳市乌当区长坡六个地区,羊肚菌置于干燥箱70 ℃烘干后,粉碎处理,过60目筛,粉末密封待用;甲醇、乙腈、三乙胺、正己烷 均为色谱纯,天津科密欧化学试剂有限公司;异硫氰酸酯(PITC) 纯度大于98%,上海麦克林生化科技有限公司;乙酸铵、冰醋酸 均为分析纯,天津科密欧化学试剂有限公司;超纯水 自制;18种氨基酸 [天冬氨酸(Asp)、谷氨酸(Glu)、精氨酸(Arg)、苏氨酸(Thr)、缬氨酸(Val)、异亮氨酸(Ile)、亮氨酸(Leu)、酪氨酸(Tyr)、苯丙氨酸(Phe)、色氨酸(Trp)、甘氨酸(Gly)、组氨酸(His)、丙氨酸(Ala)、甲硫氨酸(Met)、赖氨酸(Lys)、脯氨酸(Pro)、丝氨酸(Ser)、茶氨酸(The)] 纯度均大于98%,北京世纪奥科生物技术有限公司。

    Agilent 1100高效液相色谱仪(方法学考察所用)、Agilent 1260高效液相色谱仪 安捷伦科技有限公司;DZKW- 电热恒温水浴锅 天津天泰仪器有限公司;200T粉碎机 永康铂欧五金制品有限公司;AL-104电子天平 梅特勒-托利多公司;CH-250超声波清洗机 北京创新德超声电子研究所;Discovery DV215CD分析天平 上海奥豪斯仪器有限公司;202-1型恒温干燥箱 上海实验仪器厂有限公司。

    精密称取茶氨酸,配制浓度为0.404 mg/mL的内标溶液。

    精确称取 Asp、Glu、Ser、Gly、His、Thr、Ala、Arg、Pro、Tyr、Val、Met、Ile、Leu、Phe、Trp、Lys等17种氨基酸至10 mL容量瓶中,加水定容得到混标储备液。移取1 mL混标储备液和0.5 mL内标溶液于5 mL容量瓶,加水定容,得到0.0397、0.0496、0.0218、0.0208、0.0078、0.1017、0.0311、0.0447、0.0277、0.0182、0.0207、0.0061、0.0184、0.0263、0.0170、0.0181、0.0446 mg/mL的混合氨基酸标准溶液。

    衍生试剂A:取1.4 mL 1 mol/L 的三乙胺溶液至10 mL容量瓶,用乙腈定容,摇匀;衍生试剂B:吸取125 μL PITC至10 mL容量瓶,用乙腈定容至刻度,摇匀。

    准确称取20 mg羊肚菌于安瓿瓶中,加6.0 mol/L的HCl 溶液2 mL,吹入氮气后密封,将其置于(105±5)℃ 恒温干燥箱中24 h,使氨基酸完全水解。取出冷却后置80 ℃水浴挥干,多次加水挥发盐酸。加1 mL蒸馏水溶解,超声后得到样品溶液。将0.5 mL的内标溶液和样品溶液移加至5 mL容量瓶,加水定容,得到样品供试溶液,等待衍生。吸取0.5 mL的内标溶液加至5 mL容量瓶,加水定容,得空白溶液。

    精密吸取 200 μL 的氨基酸标准溶液(或样品供试溶液、空白液)于离心管中,加入衍生试剂A、B各100 μL,置40 ℃水浴锅中反应 1 h,加入400 μL正己烷,振荡静置10 min。取澄清的下层液,过0.45 μm 滤膜,即得待测样品。

    分离柱为依利特 Hypersil ODS2(5 μm, 250 mm×4.6 mm);流动相A:0.05 mol/L 乙酸铵溶液(pH6.5);流动相B:乙腈;梯度洗脱(0 min, 0.8% B; 14 min, 5% B; 16 min, 6% B; 16.1 min, 4% B; 21 min, 4% B; 21.1 min, 3.5% B; 30 min, 3.5% B; 32 min, 8% B; 40 min, 15% B; 40.1 min, 16.5% B; 44 min, 16.5% B; 44.1 min, 20.8% B; 50 min, 23% B; 60 min, 25% B);流速为1 mL/min;检测波长为254 nm;柱温为35 ℃;进样量为5 μL;

    精确吸取0.25、0.5、1、2、4 mL的混标储备液,分别置于5 mL 容量瓶,再分别加入0.5 mL内标溶液,加水定容,摇匀,进行衍生化处理,按上述的色谱进样测定。以氨基酸对照品的浓度(mg/mL)为X轴,峰面积为Y轴进行线性回归。

    平行取混合标准溶液6份,进行衍生化处理,按上述的色谱条件测定。以Glu为内参物,根据相对校正因子(RCF,fkm)公式fkm =(Ck×Am)/(Cm×Ak), 计算相对校正因子,式中Ck、Cm为内参物和待测成分的浓度,Am、Ak为内参物和待测成分的峰面积[29]

    精密吸取混合标准品溶液,进行衍生化处理后按上述的色谱条件连续测定6次,记录17种氨基酸(Asp、Glu、Ser、Gly、His、Thr、Ala、Arg、Pro、Tyr、Val、Met、Ile、Leu、Phe、Trp、Lys)的峰面积,计算RSD值以评价仪器的精密度。

    吸取6份平行羊肚菌样品供试溶液,进行衍生化处理,按上述的色谱条件进样测定,记录17种氨基酸(Asp、Glu、Ser、Gly、His、Thr、Ala、Arg、Pro、Tyr、Val、Met、Ile、Leu、Phe、Trp、Lys)的峰面积,计算RSD值以考察实验的重复性。

    取样品供试溶液,衍生化后,于 0、2、4、8、16、24 h 进样分析,记录17种氨基酸(Asp、Glu、Ser、Gly、His、Thr、Ala、Arg、Pro、Tyr、Val、Met、Ile、Leu、Phe、Trp、Lys)的峰面积,计算RSD值以评价样品的稳定性。

    精密称量已知含量的羊肚菌样品9份,每份10 mg,置于安瓿瓶中,按150%、100%、50%的比例加入标准品,根据“1.2.2.1”操作后进行衍生化处理,在上述“1.2.3”的色谱条件下测定。根据测得的氨基酸的量,计算回收率和RSD值。

    平行取3份云南羊肚菌样品溶液,进行衍生化处理,按上述的色谱条件测定。采用一测多评法和内标法对羊肚菌中17种氨基酸(Asp、Glu、Ser、Gly、His、Thr、Ala、Arg、Pro、Tyr、Val、Met、Ile、Leu、Phe、Trp、Lys)的含量进行计算。

    精确吸取混合标准品溶液,进行衍生化处理后,在Agilent 1100高效液相色谱仪,“1.2.3”的色谱条件下考察依利特 Hypersil ODS2(250 mm×4.6 mm, 5 μm)和 Agilent C18(250 mm×4.6 mm, 5 μm)对氨基酸相对校正因子的影响。

    精密吸取混合对照品溶液,进行衍生化处理后,采用依利特 Hypersil ODS2(250 mm×4.6 mm, 5 μm)在“1.2.3”色谱条件下,考察两台不同色谱仪Agilent 1100 HPLC、Agilent 1260 HPLC对氨基酸相对校正因子的影响。

    精密吸取混合对照品溶液,进行衍生化处理后,采用依利特 Hypersil ODS2(250 mm×4.6 mm, 5 μm)、Agilent C18(250 mm×4.6 mm, 5 μm),在Agilent 1100 HPLC、Agilent 1260 HPLC中测定并计算以Glu为内参物,其他氨基酸的相对保留时间。

    精密称量6个不同地区的羊肚菌,按“1.2.2.1”方法制备样品供试溶液,进行衍生化处理,按“1.2.3”色谱条件进样分析,采用一测多评法对氨基酸进行含量计算。

    应用IBM SPSS Statistics 26.0软件进行t检验,实验谱图Origin Pro 9.1处理。

    在前期研究中,最初选择邻苯二甲醛为柱前衍生试剂,但衍生产物不稳定,实验的重现性较差。在文献调研后,选择了异硫氰酸苯酯为柱前衍生试剂,其反应条件温和、衍生产物性质稳定,重复性好。在前期的色谱条件研究中,考察了衍生时间对17种氨基酸出峰面积的影响。结果发现,衍生30 min的出峰面积与衍生60 min的出峰面积有一定差异,衍生30 min时间较短,可能导致衍生不完全,影响含量测定的准确度;衍生90 min与衍生60 min的出峰面积一致,考虑效率问题,选择衍生时间为60 min。

    空白、标准品及样品的HPLC色谱图如图1所示。由图1可知,在“1.2.3”色谱条件下,17种氨基酸的峰型良好,干扰较少,分离清晰。

    图  1  羊肚菌氨基酸高效液相色谱图
    注:A:空白;B:氨基酸对照品;C:羊肚菌样品。
    Figure  1.  HPLC analysis of amino acids in Morchella esculenta

    精密吸取不同浓度对照品溶液,衍生化处理后注入色谱仪,结果见表1。由表1可知,17 种氨基酸在线性范围内与峰面积呈现良好的线性关系,相关系数R2>0.9990。详见表1

    表  1  17 种氨基酸的线性回归方程
    Table  1.  Linearity relationships of 17 kinds of amino acids
    氨基酸线性回归方程线性范围(mg/mL)R2
    Aspy=4743.8x+39.4330.0099~0.15880.9993
    Gluy=4437.8x+46.8210.0124~0.19840.9990
    Sery=9075.8x+18.2880.0054~0.08720.9996
    Glyy=13024x+22.5210.0052~0.08320.9991
    Hisy=7350.8x+15.9290.0020~0.03120.9992
    Thry=8382.9x+50.3380.0254~0.40680.9991
    Alay=13661x+12.3290.0078~0.12440.9992
    Argy=4690.2x+5.80.0112~0.17880.9998
    Proy=7841.1x+39.2210.0069~0.11080.9990
    Tyry=6876.9x−2.55830.0046~0.07280.9993
    Valy=8890.4x+22.4130.0052~0.08280.9990
    Mety=8774.4x+19.9580.0015~0.02400.9993
    Iley=9859.5x−1.69170.0046~0.07360.9992
    Leuy=9427.4x+9.7750.0066~0.10480.9994
    Phey=7605.4x+8.01670.0042~0.06800.9995
    Trpy=7493.9x+16.4790.0045~0.07240.9992
    Lysy=8462.9x−4.54170.0112~0.17840.9992
    下载: 导出CSV 
    | 显示表格

    通过研究发现,苏氨酸、谷氨酸、赖氨酸和天冬氨酸在羊肚菌中的含量均较高且较稳定[18-19]。但从质控成本角度来看,谷氨酸较其他三种成分价格更加低廉且附近干扰峰较少。根据QAMS法内参物易得、价廉、有效、稳定的选择原则,本研究最终选择谷氨酸作为内参物进行相对校正因子的计算。

    以Glu为内参物,计算其与其他16种氨基酸的相对校正因子,结果表明,16种氨基酸的相对校正因子RSD≤1.73%,详见表2

    表  2  16种氨基酸的相对校正因子
    Table  2.  Relative correction factor of 17 amino acids
    序号AspSerGlyHisThrAlaArgProTyrValMetIleLeuPheTrpLys
    11.05401.69642.40301.10891.67282.38430.99071.50400.95621.71522.05341.65501.62951.27421.37641.3599
    21.04321.71032.39891.12591.65812.35420.97561.52440.97491.69172.05001.63691.63501.24221.36861.3626
    31.05301.69892.40541.10951.66582.37440.98531.51150.94981.70002.04721.61401.63431.27161.36301.3553
    41.03731.73992.44821.10511.68422.36730.99861.53980.96821.70972.04311.63711.63371.27161.37971.3564
    51.05331.72092.41591.10111.66822.39180.99651.53840.93241.71492.04241.64351.64311.26261.36351.3534
    61.04391.69312.45331.12971.68302.38341.01151.53790.93841.72812.06251.65531.63171.25921.38251.3688
    平均1.04751.70992.42081.11331.67202.37590.99301.52600.95331.70992.04981.64031.63461.26361.37231.3594
    RSD%0.661.050.991.050.610.571.241.011.730.750.370.930.280.950.610.42
    下载: 导出CSV 
    | 显示表格

    按“1.2.4.3”项下进行试验,结果显示,17种氨基酸(Asp、Glu、Ser、Gly、His、Thr、Ala、Arg、Pro、Tyr、Val、Met、Ile、Leu、Phe、Trp、Lys)的峰面积RSD(n=6)为0.89%、0.46%、1.08%、0.61%、1.17%、0.31%、0.50%、0.80%、0.80%、1.89%、0.45%、0.52%、0.90%、0.53%、0.88%、0.54%、0.57%,RSD 均小于2.0%,表示仪器的精密度良好。

    按“1.2.4.4”项方法进行测定,结果显示,17种氨基酸峰(Asp、Glu、Ser、Gly、His、Thr、Ala、Arg、Pro、Tyr、Val、Met、Ile、Leu、Phe、Trp、Lys)面积的RSD为0.56%、1.72%、1.87%、0.42%、1.53%、1.85%、1.49%、0.80%、0.93%、1.68%、0.60%、1.17%、0.92%、1.48%、0.77%、0.96%、1.65%,RSD 均小于2.0%,表明该方法具有较好的重复性。

    按“1.2.4.5”项方法进行测定,结果显示,17种氨基酸(Asp、Glu、Ser、Gly、His、Thr、Ala、Arg、Pro、Tyr、Val、Met、Ile、Leu、Phe、Trp、Lys)峰面积的 RSD为0.63%、1.48%、0.99%、1.37%、1.03%、1.49%、1.02%、1.41%、0.78%、0.67%、1.32%、1.24%、1.38%、0.75%、1.54%、1.24%、0.75%,RSD 均小于2.0%,说明样品供试溶液在24 h 内稳定。

    按“1.2.4.6”项下进行试验,结果表明,羊肚菌中17种氨基酸的平均回收率在 92.42%~101.16%之间,RSD<2.0%,说明氨基酸的回收率较好。详见表3

    表  3  加样回收率试验结果
    Table  3.  Result of recovery tests
    氨基酸样品含量(mg)加标量(mg)测得量(mg)平均回收率(%)RSD(%)
    Asp0.19870.19870.394398.421.09
    0.19870.19870.3969
    0.19870.19870.3986
    Glu0.24810.24810.497096.251.94
    0.24810.24810.5007
    0.24810.24810.4914
    Ser0.10920.10920.214399.731.46
    0.10920.10920.2154
    0.10920.10920.2174
    Gly0.10390.10390.207595.651.15
    0.10390.10390.2094
    0.10390.10390.2072
    His0.03900.03900.0763100.081.65
    0.03900.03900.0776
    0.03900.03900.0770
    Thr0.50840.50841.017392.420.25
    0.50840.50841.0157
    0.50840.50841.0182
    Ala0.15570.15570.299695.791.88
    0.15570.15570.3050
    0.15570.15570.3016
    Arg0.22350.22350.4376100.951.16
    0.22350.22350.4425
    0.22350.22350.4411
    Pro0.13860.13860.2785100.381.49
    0.13860.13860.2745
    0.13860.13860.2774
    Tyr0.09080.09080.182098.141.25
    0.09080.09080.1828
    0.09080.09080.1843
    Val0.10360.10360.205396.910.41
    0.10360.10360.2055
    0.10360.10360.2061
    Met0.03030.03030.059694.620.67
    0.03030.03030.0596
    0.03030.03030.0599
    Ile0.09190.09190.1789101.161.17
    0.09190.09190.1788
    0.09190.09190.1769
    Leu0.13130.13130.264198.361.86
    0.13130.13130.2635
    0.13130.13130.2597
    Phe0.08480.08480.168292.990.68
    0.08480.08480.1674
    0.08480.08480.1685
    Trp0.09030.09030.174392.771.70
    0.09030.09030.1734
    0.09030.09030.1762
    Lys0.22280.22280.4295100.321.62
    0.22280.22280.4347
    0.22280.22280.4285
    下载: 导出CSV 
    | 显示表格

    按“1.2.5”项下采用QAMS和内标法计算羊肚菌中17种氨基酸的含量,结果见表4。由表4可知,QAMS和内标法测定结果基本一致。对2种方法测得结果进行t检验分析,结果显示,2种方法测定的17种有效成分的含量均无显著差异(P>0.05)。说明一测多评法在测定羊肚菌氨基酸中的适用性和可行性得到了验证,在对照品缺乏的情况下,所建立的一测多评法可以作为一种经济、准确、快捷的方法应用羊肚菌质量的评价。

    表  4  羊肚菌氨基酸含量测定(mg/mL)
    Table  4.  Amino acid content of Morchella esculenta(mg/mL)
    批次GluAspSerGlyHisThr
    内标法内标法QAMS内标法QAMS内标法QAMS内标法QAMS内标法QAMS
    10.04960.03960.03970.02140.02180.02040.02080.00700.00780.10120.1017
    20.04980.04010.03990.02170.02190.02080.02100.00780.00790.10150.1018
    30.04950.03910.03940.02120.02150.02070.02070.00780.00760.10080.1013
    批次AlaArgProTyrVal
    内标法QAMS内标法QAMS内标法QAMS内标法QAMS内标法QAMS
    10.03090.03110.04390.04470.02740.02770.01760.01820.02030.0207
    20.03110.03140.04440.04490.02760.02790.01780.01830.02060.0209
    30.03090.03100.04420.04440.02680.02720.01800.01800.02050.0205
    批次MetIleLeuPheTrpLys
    内标法QAMS内标法QAMS内标法QAMS内标法QAMS内标法QAMS内标法QAMS
    10.00570.00610.01800.01840.02580.02630.01660.01700.01770.01810.04440.0446
    20.00630.00640.01840.01850.02600.02630.01670.01700.01820.01830.04480.0447
    30.00590.00590.01800.01820.02560.02570.01660.01670.01790.01820.04430.0443
    下载: 导出CSV 
    | 显示表格

    采用依利特 Hypersil ODS2(250 mm×4.6 mm, 5 μm)、Agilent C18(250 mm×4.6 mm, 5 μm)色谱柱在Agilent 1100 HPLC测定16种氨基酸的相对校正因子影响见表5。由表5可知,16种氨基酸的相对校正因子在不同色谱柱下的RSD均小于1.85%,说明相对校正因子在不同品牌色谱柱下具有良好的重复性。

    表  5  不同色谱柱、色谱仪对相对校正因子的影响
    Table  5.  Effect of different chromatographic columns and instruments on RCF
    氨基酸Agilent 1100 HPLCHypersil ODS2
    依利特ODS2Agilent C18RSD(%)Agilent 1100 HPLCAgilent 1260 HPLCRSD(%)
    Asp1.04151.04860.481.04881.05000.08
    Ser1.70411.70270.061.70651.69390.53
    Gly2.42702.41490.352.41742.42400.19
    His1.11801.10041.121.11921.11160.48
    Thr1.66951.63111.651.65261.66600.57
    Ala2.38432.33131.592.39052.37910.34
    Arg0.99070.98670.280.98350.98170.12
    Pro1.51601.50640.451.52961.56401.57
    Tyr0.95350.94750.440.95900.97741.34
    Val1.69511.72381.191.69201.66920.96
    Met2.05342.02261.072.00041.98770.45
    Ile1.65501.63690.771.61401.60060.59
    Leu1.62951.60341.141.63431.60821.14
    Phe1.27421.26180.691.25881.23211.51
    Trp1.37091.33551.851.35201.33330.98
    Lys1.35241.33720.801.34411.31881.34
    下载: 导出CSV 
    | 显示表格

    采用依利特 Hypersil ODS2(250 mm×4.6 mm, 5 μm)色谱柱,考察Agilent 1100 HPLC、Agilent 1260 HPLC 对16种氨基酸相对校正因子的影响见表5。由表5可知,不同仪器下的氨基酸相对校正因子的RSD均不大于1.57%,重复性良好,说明此方法适用于不同的色谱体系。

    色谱峰的准确定位是保证QAMS法应用的前提。以谷氨酸为内参物,采用不同色谱柱及高效液相色谱仪,验证相对保留时间定位色谱峰的准确性,详见表6。由表6可知,在不同色谱柱和色谱系统下,相对保留时间变化幅度较小,RSD均≤1.14%,可准确定位。

    表  6  不同色谱柱、色谱仪的相对保留时间
    Table  6.  Relative retention times of different chromatographic columns and instruments
    氨基酸Agilent 1100 HPLCHypersil ODS2
    依利特ODS2Agilent C18RSD(%)Agilent 1100 HPLCAgilent 1260 HPLCRSD(%)
    Asp1.2541.2550.051.2521.2540.10
    Ser0.5270.5240.420.5270.5240.36
    Gly0.4890.4860.410.4890.4870.36
    His0.4080.4040.800.4100.4120.37
    Thr0.3320.3340.280.3320.3340.55
    Ala0.3060.3060.160.3040.3060.34
    Arg0.2770.2750.490.2760.2750.27
    Pro0.2360.2370.060.2360.2350.27
    Tyr0.1850.1821.140.1860.1840.61
    Val0.1800.1771.040.1810.1790.46
    Met0.1730.1701.100.1740.1720.57
    Ile0.1650.1621.120.1660.1650.57
    Leu0.1640.1611.120.1650.1630.56
    Phe0.1570.1541.140.1580.1560.59
    Trp0.1540.1520.930.1550.1540.38
    Lys0.1500.1471.140.1500.1490.57
    下载: 导出CSV 
    | 显示表格

    采用一测多评法测定6个地区羊肚菌中17种氨基酸的含量见表7。由表7可知,羊肚菌富含8种必需氨基酸,其占氨基酸总量的47.22%~55.34%,其中Thr含量是最高的,占总量的16.55%~21.77%。甜味氨基酸占总量的36.60%~45.77%,鲜味氨基酸占总量的21.63%~27.34%。Leu和Val具有焙烤风味和特殊甜味,这些氨基酸在羊肚菌香味的形成过程中有重要作用,这是羊肚菌具有独特风味的重要原因。

    表  7  不同地区羊肚菌氨基酸含量测定(g/100 g)
    Table  7.  Amino acid content of Morchella esculenta(g/100 g)
    氨基酸长坡森林乌当铜仁剑河云南新疆
    Asp2.110±0.0452.150±0.0772.031±0.0271.794±0.0491.983±0.0251.322±0.025
    Glu2.825±0.0692.435±0.0972.658±0.0422.094±0.0182.477±0.0341.421±0.023
    Ser1.265±0.0250.997±0.0120.960±0.0170.969±0.0181.090±0.0180.769±0.008
    Gly1.113±0.0211.036±0.0171.023±0.0110.980±0.0191.020±0.0210.825±0.007
    His1.046±0.0110.870±0.0151.170±0.0181.203±0.0170.385±0.0020.515±0.004
    Thr*4.877±0.0835.164±0.0835.147±0.0694.429±0.0965.085±0.0973.607±0.076
    Ala1.256±0.0101.447±0.0171.400±0.0261.190±0.0261.558±0.0170.944±0.016
    Arg2.855±0.0922.057±0.0651.989±0.0602.195±0.0452.229±0.0560.622±0.007
    Pro1.185±0.0251.160±0.0201.035±0.0141.042±0.0201.384±0.0200.889±0.014
    Tyr1.165±0.0181.112±0.0191.300±0.0250.943±0.0140.920±0.0141.528±0.034
    Val*1.291±0.0221.341±0.0321.347±0.0332.050±0.0551.042±0.0080.936±0.013
    Met*0.453±0.0040.253±0.0010.365±0.0030.332±0.0020.308±0.0020.313±0.002
    Ile*1.125±0.0151.050±0.0211.053±0.0211.001±0.0170.929±0.0130.824±0.009
    Leu *1.651±0.0421.471±0.0251.512±0.0271.374±0.0281.335±0.0261.113±0.011
    Phe*1.007±0.0190.959±0.0180.953±0.0170.966±0.0120.840±0.0140.706±0.010
    Trp*1.060±0.0210.912±0.0120.778±0.0081.621±0.0390.912±0.0130.179±0.001
    Lys*2.544±0.0852.785±0.0872.539±0.0612.126±0.0652.245±0.0501.443±0.023
    TAA28.827±1.09927.197±1.36427.259±1.37926.311±1.03725.743±1.61917.952±1.733
    EAA14.007±0.11613.934±1.32913.694±0.50313.900±0.20812.697±0.7239.119 ±0.299
    NEAA14.820±0.51213.263±0.70313.566±0.38612.411±0.46413.046±0.6068.833±0.703
    注:*为人体必需氨基酸;鲜味氨基酸(Asp、Glu、Lys);甜味氨基酸(Thr、Ser、Gly、Ala、His、Pro);药用氨基酸(Met、Asp、Glu、Phe、Lys、Leu、Arg、Tyr、Gly)。
    下载: 导出CSV 
    | 显示表格

    药用氨基酸种类齐全,占氨基酸总量的47.74%~56.42%,其中Glu、Lys平均占药用氨基酸总量的17.29%、17.05%。羊肚菌中含有的丰富赖氨酸可以补充谷物中赖氨酸的不足,Glu对脑神经损伤、癫痫有效,还具有护肝功效。综上所述,羊肚菌富含各类药用氨基酸为其开发各种保健食品、药品以及日常食用的药膳提供了一定的基础。

    不同产地羊肚菌之间氨基酸总量有明显差异,长坡岭森林公园下野生的羊肚菌样品氨基酸总量最高,新疆羊肚菌氨基酸总量最少,且不同地区的各氨基酸含量有一定差异,由此可知,其品质差异与其环境、气候、种植方式等因素有关。

    对六个不同地区的羊肚菌氨基酸测定结果显示,羊肚菌中氨基酸含量丰富,且富含人体所需的必需氨基酸和药用氨基酸,有较高的食用价值,可作为人体必需氨基酸营养的天然来源之一,且极具开发作为补充氨基酸的功能性食品;其鲜味、甜味氨基酸含量较高,是开发食品调味剂的天然宝库。综上所述,羊肚菌在食品、医疗领域具有很大的开发潜力和广阔的应用前景。

    采用QAMS法测定羊肚菌中17种氨基酸的含量,建立并应用内标法验证该方法同时测定羊肚菌中17种氨基酸含量的可行性,结果表明,两种方法测得的结果无显著性差异(P>0.05),不同色谱柱和仪器之间的相对校正因子重复性良好,且QAMS法操作简单,极大程度提高了工作效率,可为建立羊肚菌的质量评价提供参考。同时,为羊肚菌的应用提供一定的理论支持,为羊肚菌的开发利用指明了方向,对推动羊肚菌行业的发展有重要意义。

  • 图  1   羊肚菌氨基酸高效液相色谱图

    注:A:空白;B:氨基酸对照品;C:羊肚菌样品。

    Figure  1.   HPLC analysis of amino acids in Morchella esculenta

    表  1   17 种氨基酸的线性回归方程

    Table  1   Linearity relationships of 17 kinds of amino acids

    氨基酸线性回归方程线性范围(mg/mL)R2
    Aspy=4743.8x+39.4330.0099~0.15880.9993
    Gluy=4437.8x+46.8210.0124~0.19840.9990
    Sery=9075.8x+18.2880.0054~0.08720.9996
    Glyy=13024x+22.5210.0052~0.08320.9991
    Hisy=7350.8x+15.9290.0020~0.03120.9992
    Thry=8382.9x+50.3380.0254~0.40680.9991
    Alay=13661x+12.3290.0078~0.12440.9992
    Argy=4690.2x+5.80.0112~0.17880.9998
    Proy=7841.1x+39.2210.0069~0.11080.9990
    Tyry=6876.9x−2.55830.0046~0.07280.9993
    Valy=8890.4x+22.4130.0052~0.08280.9990
    Mety=8774.4x+19.9580.0015~0.02400.9993
    Iley=9859.5x−1.69170.0046~0.07360.9992
    Leuy=9427.4x+9.7750.0066~0.10480.9994
    Phey=7605.4x+8.01670.0042~0.06800.9995
    Trpy=7493.9x+16.4790.0045~0.07240.9992
    Lysy=8462.9x−4.54170.0112~0.17840.9992
    下载: 导出CSV

    表  2   16种氨基酸的相对校正因子

    Table  2   Relative correction factor of 17 amino acids

    序号AspSerGlyHisThrAlaArgProTyrValMetIleLeuPheTrpLys
    11.05401.69642.40301.10891.67282.38430.99071.50400.95621.71522.05341.65501.62951.27421.37641.3599
    21.04321.71032.39891.12591.65812.35420.97561.52440.97491.69172.05001.63691.63501.24221.36861.3626
    31.05301.69892.40541.10951.66582.37440.98531.51150.94981.70002.04721.61401.63431.27161.36301.3553
    41.03731.73992.44821.10511.68422.36730.99861.53980.96821.70972.04311.63711.63371.27161.37971.3564
    51.05331.72092.41591.10111.66822.39180.99651.53840.93241.71492.04241.64351.64311.26261.36351.3534
    61.04391.69312.45331.12971.68302.38341.01151.53790.93841.72812.06251.65531.63171.25921.38251.3688
    平均1.04751.70992.42081.11331.67202.37590.99301.52600.95331.70992.04981.64031.63461.26361.37231.3594
    RSD%0.661.050.991.050.610.571.241.011.730.750.370.930.280.950.610.42
    下载: 导出CSV

    表  3   加样回收率试验结果

    Table  3   Result of recovery tests

    氨基酸样品含量(mg)加标量(mg)测得量(mg)平均回收率(%)RSD(%)
    Asp0.19870.19870.394398.421.09
    0.19870.19870.3969
    0.19870.19870.3986
    Glu0.24810.24810.497096.251.94
    0.24810.24810.5007
    0.24810.24810.4914
    Ser0.10920.10920.214399.731.46
    0.10920.10920.2154
    0.10920.10920.2174
    Gly0.10390.10390.207595.651.15
    0.10390.10390.2094
    0.10390.10390.2072
    His0.03900.03900.0763100.081.65
    0.03900.03900.0776
    0.03900.03900.0770
    Thr0.50840.50841.017392.420.25
    0.50840.50841.0157
    0.50840.50841.0182
    Ala0.15570.15570.299695.791.88
    0.15570.15570.3050
    0.15570.15570.3016
    Arg0.22350.22350.4376100.951.16
    0.22350.22350.4425
    0.22350.22350.4411
    Pro0.13860.13860.2785100.381.49
    0.13860.13860.2745
    0.13860.13860.2774
    Tyr0.09080.09080.182098.141.25
    0.09080.09080.1828
    0.09080.09080.1843
    Val0.10360.10360.205396.910.41
    0.10360.10360.2055
    0.10360.10360.2061
    Met0.03030.03030.059694.620.67
    0.03030.03030.0596
    0.03030.03030.0599
    Ile0.09190.09190.1789101.161.17
    0.09190.09190.1788
    0.09190.09190.1769
    Leu0.13130.13130.264198.361.86
    0.13130.13130.2635
    0.13130.13130.2597
    Phe0.08480.08480.168292.990.68
    0.08480.08480.1674
    0.08480.08480.1685
    Trp0.09030.09030.174392.771.70
    0.09030.09030.1734
    0.09030.09030.1762
    Lys0.22280.22280.4295100.321.62
    0.22280.22280.4347
    0.22280.22280.4285
    下载: 导出CSV

    表  4   羊肚菌氨基酸含量测定(mg/mL)

    Table  4   Amino acid content of Morchella esculenta(mg/mL)

    批次GluAspSerGlyHisThr
    内标法内标法QAMS内标法QAMS内标法QAMS内标法QAMS内标法QAMS
    10.04960.03960.03970.02140.02180.02040.02080.00700.00780.10120.1017
    20.04980.04010.03990.02170.02190.02080.02100.00780.00790.10150.1018
    30.04950.03910.03940.02120.02150.02070.02070.00780.00760.10080.1013
    批次AlaArgProTyrVal
    内标法QAMS内标法QAMS内标法QAMS内标法QAMS内标法QAMS
    10.03090.03110.04390.04470.02740.02770.01760.01820.02030.0207
    20.03110.03140.04440.04490.02760.02790.01780.01830.02060.0209
    30.03090.03100.04420.04440.02680.02720.01800.01800.02050.0205
    批次MetIleLeuPheTrpLys
    内标法QAMS内标法QAMS内标法QAMS内标法QAMS内标法QAMS内标法QAMS
    10.00570.00610.01800.01840.02580.02630.01660.01700.01770.01810.04440.0446
    20.00630.00640.01840.01850.02600.02630.01670.01700.01820.01830.04480.0447
    30.00590.00590.01800.01820.02560.02570.01660.01670.01790.01820.04430.0443
    下载: 导出CSV

    表  5   不同色谱柱、色谱仪对相对校正因子的影响

    Table  5   Effect of different chromatographic columns and instruments on RCF

    氨基酸Agilent 1100 HPLCHypersil ODS2
    依利特ODS2Agilent C18RSD(%)Agilent 1100 HPLCAgilent 1260 HPLCRSD(%)
    Asp1.04151.04860.481.04881.05000.08
    Ser1.70411.70270.061.70651.69390.53
    Gly2.42702.41490.352.41742.42400.19
    His1.11801.10041.121.11921.11160.48
    Thr1.66951.63111.651.65261.66600.57
    Ala2.38432.33131.592.39052.37910.34
    Arg0.99070.98670.280.98350.98170.12
    Pro1.51601.50640.451.52961.56401.57
    Tyr0.95350.94750.440.95900.97741.34
    Val1.69511.72381.191.69201.66920.96
    Met2.05342.02261.072.00041.98770.45
    Ile1.65501.63690.771.61401.60060.59
    Leu1.62951.60341.141.63431.60821.14
    Phe1.27421.26180.691.25881.23211.51
    Trp1.37091.33551.851.35201.33330.98
    Lys1.35241.33720.801.34411.31881.34
    下载: 导出CSV

    表  6   不同色谱柱、色谱仪的相对保留时间

    Table  6   Relative retention times of different chromatographic columns and instruments

    氨基酸Agilent 1100 HPLCHypersil ODS2
    依利特ODS2Agilent C18RSD(%)Agilent 1100 HPLCAgilent 1260 HPLCRSD(%)
    Asp1.2541.2550.051.2521.2540.10
    Ser0.5270.5240.420.5270.5240.36
    Gly0.4890.4860.410.4890.4870.36
    His0.4080.4040.800.4100.4120.37
    Thr0.3320.3340.280.3320.3340.55
    Ala0.3060.3060.160.3040.3060.34
    Arg0.2770.2750.490.2760.2750.27
    Pro0.2360.2370.060.2360.2350.27
    Tyr0.1850.1821.140.1860.1840.61
    Val0.1800.1771.040.1810.1790.46
    Met0.1730.1701.100.1740.1720.57
    Ile0.1650.1621.120.1660.1650.57
    Leu0.1640.1611.120.1650.1630.56
    Phe0.1570.1541.140.1580.1560.59
    Trp0.1540.1520.930.1550.1540.38
    Lys0.1500.1471.140.1500.1490.57
    下载: 导出CSV

    表  7   不同地区羊肚菌氨基酸含量测定(g/100 g)

    Table  7   Amino acid content of Morchella esculenta(g/100 g)

    氨基酸长坡森林乌当铜仁剑河云南新疆
    Asp2.110±0.0452.150±0.0772.031±0.0271.794±0.0491.983±0.0251.322±0.025
    Glu2.825±0.0692.435±0.0972.658±0.0422.094±0.0182.477±0.0341.421±0.023
    Ser1.265±0.0250.997±0.0120.960±0.0170.969±0.0181.090±0.0180.769±0.008
    Gly1.113±0.0211.036±0.0171.023±0.0110.980±0.0191.020±0.0210.825±0.007
    His1.046±0.0110.870±0.0151.170±0.0181.203±0.0170.385±0.0020.515±0.004
    Thr*4.877±0.0835.164±0.0835.147±0.0694.429±0.0965.085±0.0973.607±0.076
    Ala1.256±0.0101.447±0.0171.400±0.0261.190±0.0261.558±0.0170.944±0.016
    Arg2.855±0.0922.057±0.0651.989±0.0602.195±0.0452.229±0.0560.622±0.007
    Pro1.185±0.0251.160±0.0201.035±0.0141.042±0.0201.384±0.0200.889±0.014
    Tyr1.165±0.0181.112±0.0191.300±0.0250.943±0.0140.920±0.0141.528±0.034
    Val*1.291±0.0221.341±0.0321.347±0.0332.050±0.0551.042±0.0080.936±0.013
    Met*0.453±0.0040.253±0.0010.365±0.0030.332±0.0020.308±0.0020.313±0.002
    Ile*1.125±0.0151.050±0.0211.053±0.0211.001±0.0170.929±0.0130.824±0.009
    Leu *1.651±0.0421.471±0.0251.512±0.0271.374±0.0281.335±0.0261.113±0.011
    Phe*1.007±0.0190.959±0.0180.953±0.0170.966±0.0120.840±0.0140.706±0.010
    Trp*1.060±0.0210.912±0.0120.778±0.0081.621±0.0390.912±0.0130.179±0.001
    Lys*2.544±0.0852.785±0.0872.539±0.0612.126±0.0652.245±0.0501.443±0.023
    TAA28.827±1.09927.197±1.36427.259±1.37926.311±1.03725.743±1.61917.952±1.733
    EAA14.007±0.11613.934±1.32913.694±0.50313.900±0.20812.697±0.7239.119 ±0.299
    NEAA14.820±0.51213.263±0.70313.566±0.38612.411±0.46413.046±0.6068.833±0.703
    注:*为人体必需氨基酸;鲜味氨基酸(Asp、Glu、Lys);甜味氨基酸(Thr、Ser、Gly、Ala、His、Pro);药用氨基酸(Met、Asp、Glu、Phe、Lys、Leu、Arg、Tyr、Gly)。
    下载: 导出CSV
  • [1] 孙巧弟, 张江萍, 谢洋洋, 等. 羊肚菌营养素、功能成分和保健功能研究进展[J]. 食品科学,2019,40(5):323−328. [SUN Q D, ZHANG J P, XIE Y Y, et al. Research progress on nutrients, functional components and health function of Morchella morchella[J]. Food Science,2019,40(5):323−328. doi: 10.7506/spkx1002-6630-20180411-135
    [2] 李文佳, 田野, 高昊, 等. 羊肚菌化学成分及药理活性研究进展[A]. 中国菌物学会、迪庆藏族自治州人民政府. 2018第三届全国羊肚菌大会资料汇编[C]. 中国菌物学会、迪庆藏族自治州人民政府: 中国菌物学会, 2018: 8.

    LI W J, TIAN Y, GAO H, et al. Research progress on chemical constituents and pharmacological activities of Morchella morchella[A]. Chinese Society of Mycology, People's Government of Diqing Tibetan Autonomous Prefecture. Data Compilation of the Third National Morchella Conference 2018[C]. Mycology Society of China, People's Government of Diqing Tibetan Autonomous Prefecture: Mycology Society of China, 2018: 8.

    [3] 权美平, 张丽芳. 羊肚菌生物学特征及价值的研究进展[J]. 北方园艺,2012(18):178−180. [Quan M P, Zhang L F. Research progress on biological characteristics and value of Morchella[J]. Northern Horticulture,2012(18):178−180.
    [4]

    CHAI H M, CHEN W M, ZHANG X L, et al. Structural variation and phylogenetic analysis of the mating-type locus in the genus Morchella[J]. Mycologia,2019,111(4):551−562. doi: 10.1080/00275514.2019.1628553

    [5]

    DU X H, ZHAO Q, O’DONNELL K, et al. Multigene molecular phylogenetics reveals true morels (Morchella) are especially species-rich in China[J]. Fungal Genetics and Biology,2012,49(6):455−469. doi: 10.1016/j.fgb.2012.03.006

    [6]

    MASAPHY S. Biotechnology of morel mushrooms: Successful fruiting body formation and development in a soilless system[J]. Springer Netherlands,2010,32(10):1523−1527.

    [7] 敏玉霞, 戴彩虹, 毛玉萍. 甘肃省甘南州羊肚菌研究与开发进展[A]. 中国菌物学会、迪庆藏族自治州人民政府. 2018第三届全国羊肚菌大会资料汇编[C]. 中国菌物学会、迪庆藏族自治州人民政府: 中国菌物学会, 2018: 5.

    MIN Y X, DAI C H, MAO Y P. Research and development progress of Morchella in Gannan Prefecture, Gansu Province [A]. Chinese Society of Mycology, People's Government of Diqing Tibetan Autonomous Prefecture. Data Compilation of the Third National Morchella Conference 2018[C]. Mycology Society of China, People's Government of Diqing Tibetan Autonomous Prefecture: Mycology Society of China, 2018: 5.

    [8]

    LIU Q Z, MA H S, ZHANG Y, et al. Artificial cultivation of true morels: Current state, issues and perspectives[J]. Critical reviews in biotechnology,2018,38(2):259−271. doi: 10.1080/07388551.2017.1333082

    [9]

    NITHA B, FIJESH P V, JANARDHANAN K K. Hepatoprotective activity of cultured mycelium of Morel mushroom, Morchella esculenta[J]. Experimental and Toxicologic Pathology,2013,65(1-2):105−112. doi: 10.1016/j.etp.2011.06.007

    [10]

    VIEIRA V, FERNANDES N, BARROS L, et al. Wild Morchella conica Pers. from different origins: A comparative study of nutritional and bioactive properties[J]. Journal of the Science of Food and Agriculture,2016,96(1):90−98. doi: 10.1002/jsfa.7063

    [11]

    VÍCTOR C, ARIANE R, JUAN A R, et al. The Morchella esculenta of the digestive tract[J]. International Journal of Surgical Pathology,2015,23(1):28−29. doi: 10.1177/1066896914558264

    [12] 黄小兰, 何旭峰, 杨勤, 等. 不同产地地参中17种氨基酸的测定与分析[J]. 食品科学,2021,42(2):255−261. [HUANG X L, HE X F, YANG Q, et al. Determination and analysis of 17 kinds of amino acids in rhizome ginseng from different producing areas[J]. Food Science,2021,42(2):255−261. doi: 10.7506/spkx1002-6630-20200108-090
    [13] 刘伟, 张群, 李志坚, 等. 不同品种黄花菜游离氨基酸组成的主成分分析及聚类分析[J]. 食品科学,2019,40(10):243−250. [LIU W, ZHANG Q, LI Z J, et al. Principal component analysis and cluster analysis of free amino acid composition of different varieties of dayllower[J]. Food Science,2019,40(10):243−250. doi: 10.7506/spkx1002-6630-20180523-336
    [14] 何洁, 莫仁甫, 劳水兵, 等. 紫果西番莲和其它5种水果中氨基酸组分分析[J]. 食品工业科技,2018,39(6):298−300, 316. [HE J, MO R F, LAO S B, et al. Analysis of amino acid components in Passiflora sinensis and other 5 fruits[J]. Science and Technology of Food Industry,2018,39(6):298−300, 316.
    [15] 李美凤, 刘雨诗, 王丽姣, 等. 不同产地藜麦籽氨基酸组成及其营养价值评价[J]. 食品工业科技,2019,40(18):289−292, 308. [LI M F, LIU Y S, WANG L J, et al. Amino acid composition and nutritional value evaluation of quinoa seeds from different producing areas[J]. Science and Technology of Food Industry,2019,40(18):289−292, 308.
    [16] 黄元河, 黄玉镯, 潘乔丹, 等. 柱前衍生化HPLC法测定柊叶游离氨基酸成分及风味评价[J]. 食品工业科技,2021,42(1):292−296, 303. [HUANG Y H, HUANG Y Z, PAN J D, et al. By contrast, the characteristics of free amino acids and the evaluation of flavor by HPLC before column derivatization[J]. Science and Technology of Food Industry,2021,42(1):292−296, 303.
    [17] 中华人民共和国国家卫生和计划生育委员会. GB/T 5009.124-2016 文后参考文献著录规则[S]. 北京;中国标准出版社, 2016.

    National Health and Family Planning Commission of the People's Republic of China. GB/T 5009.124-2016: Rules for bibliographing after publication[S]. Beijing: Standard Press of China, 2016.

    [18] 吴素蕊, 侯波, 郭相, 等. 黑脉羊肚菌营养成分分析比较[J]. 食品科技,2011,36(7):65−66, 72. [WU S R, HOU B, GUO X, et al. Analysis and comparison of nutritive components of Morchella Niger[J]. Food Science and Technology,2011,36(7):65−66, 72.
    [19] 张航, 宋卿, 林佶, 等. 氨基酸自动分析仪法测定云南新鲜羊肚菌中16种氨基酸的含量[J]. 食品安全质量检测学报,2019,10(22):7564−7569. [ZHANG H, SONG Q, LIN J, et al. Determination of 16 amino acids in fresh Morchella Yunnan by automatic amino acid analyzer[J]. Journal of Food Safety and Quality Inspection,2019,10(22):7564−7569.
    [20] 黄世群, 秦琳, 仲伶俐, 等. 野生黑虎掌菌与羊肚菌营养成分测定及分析比较[J]. 山西农业科学,2019,47(12):2098−2102. [HUANG S Q, QIN L, ZHONG L L, et al. Determination and analysis of nutrient components of wild Morchella sinensis and Morchella sinensis[J]. Journal of Shanxi Agricultural Sciences,2019,47(12):2098−2102. doi: 10.3969/j.issn.1002-2481.2019.12.11
    [21] 陈凤霞, 杨天伟, 李杰庆, 等. 云南不同产地美味牛肝菌元素含量特征分析及风险评估[J]. 食品科学,2020,41(12):279−284. [CHEN F X, YANG T W, LI J Q, et al. Analysis of element content characteristics and risk assessment of Beauveria deliciata from different producing areas in Yunnan[J]. Food Science,2020,41(12):279−284. doi: 10.7506/spkx1002-6630-20190724-317
    [22] 杨旭昆, 汪禄祥, 刘艳芳, 等. 7种云南野生食用菌的氨基酸组成比较分析及营养评价[J]. 食品安全质量检测学报,2016,7(10):3912−3917. [YANG X K, WANG L X, LIU Y F, et al. Comparative analysis of amino acid composition and nutritional evaluation of seven kinds of Yunnan wild edible fungi[J]. Journal of Food Safety and Quality Inspection,2016,7(10):3912−3917.
    [23] 顾可飞, 周昌艳, 邵毅, 等. 云南省野生牛肝菌与羊肚菌营养成分分析[J]. 食品研究与开发,2017,38(17):129−133. [GU K F, ZHOU C Y, SHAO Y, et al. Analysis of nutrient components of wild porcinella and Morchella in Yunnan Province[J]. Food Research and Development,2017,38(17):129−133. doi: 10.3969/j.issn.1005-6521.2017.17.029
    [24] 刘蓓, 吴素蕊, 朱萍, 等. 滇西北地区四种羊肚菌营养成分分析比较[J]. 食品工业科技,2012,33(1):363−365. [LIU B, WU S R, ZHU P, et al. Analysis and comparison of nutritional components of four Morchella species in northwest Yunnan[J]. Science and Technology of Food Industry,2012,33(1):363−365.
    [25] 程春梅, 苏建国. 气相色谱内标法测定蜜饯中的甜蜜素含量[J]. 食品研究与开发,2019,40(5):182−185. [CHENG C M, SU J G. Determination of cyclate content in candied fruit by gas chromatography[J]. Food Research and Development,2019,40(5):182−185. doi: 10.3969/j.issn.1005-6521.2019.05.033
    [26] 李中贤, 赵灿方, 刘小培, 等. 气相色谱内标法测定葡萄酒中的甲醇含量[J]. 河南科学,2018,36(11):1723−1728. [LI Z X, ZHAO C F, LIU X P, et al. Determination of methanol content in wine by internal standard gas chromatography[J]. Henan Science,2018,36(11):1723−1728. doi: 10.3969/j.issn.1004-3918.2018.11.008
    [27] 陆兔林, 石上梅, 蔡宝昌, 等. 基于一测多评的中药多成分定量研究进展[J]. 中草药,2012,43(12):2525−2529. [LU T L, SHI S M, CAI B C, et al. Progress in quantitative research of multiple components in Chinese herbal medicine based on one measurement and multiple evaluation[J]. Chinese Journal of Herbal Medicine,2012,43(12):2525−2529.
    [28] 文乾映, 龙芳, 杨华, 等. 中药质量控制中一测多评法的应用进展[J]. 中国药房,2014,25(23):2185−2188. [WEN G Y, LONG F, YANG H, et al. Progress in application of single measurement and multiple evaluation method for quality control of traditional Chinese medicine[J]. China Pharmacy,2014,25(23):2185−2188. doi: 10.6039/j.issn.1001-0408.2014.23.28
    [29] 熊静, 龚易昕悦, 王润月, 等. 一测多评法在食品研究中的应用进展[J]. 食品工业科技,2020,41(22):351−357. [XIONG J, GONG Y X Y, WANG R Y, et al. Application progress of one measurement and multiple evaluation method in food research[J]. Science and Technology of Food Industry,2020,41(22):351−357.
    [30] 杨玲, 刘齐, 刘成浩, 等. 一测多评法测定蜂胶类保健食品中咖啡酸等4种成分的含量[J]. 食品工业科技,2019,40(13):134−140. [YANG L, LIU Q, LIU C H, et al. Determination of caffeic acid and other four components in propolis health food by one measurement and multiple evaluation method[J]. Science and Technology of Food Industry,2019,40(13):134−140.
    [31] 徐家怡, 张煜, 王娇, 等. 一测多评法测定食用玫瑰中5种非挥发性成分的含量[J]. 食品工业科技,2018,39(24):234−239, 245. [XU J Y, ZHANG Y, WANG J, et al. Determination of five non-volatile components in edible rose by one measurement and multiple evaluation method[J]. Science and Technology of Food Industry,2018,39(24):234−239, 245.
    [32] 杨玲, 刘成浩, 韩萧茜, 等. 对一测多评法测定蜂胶类保健食品中芹菜素等5种成分含量的评价研究[J]. 食品工业科技,2020,41(1):229−235, 251. [YANG L, LIU C H, HAN X Q, et al. Evaluation of apigenin and other five components in propolis health food by one test and multiple evaluation method[J]. Science and Technology of Food Industry,2020,41(1):229−235, 251.
    [33] 魏丽娟, 易倩, 张曲, 等. 一测多评法测定藜麦中6种酚类成分[J]. 食品工业科技,2018,39(19):232−236, 242. [WEI L J, YI Q, ZHANG Q, et al. Determination of 6 phenolic compounds in quinoa by one measurement and multiple evaluation method[J]. Science and Technology of Food Industry,2018,39(19):232−236, 242.
    [34]

    ZHANG H, LI Z H, FAN X H. UPLC fingerprint combined with quantitative analysis of multi-components by single marker for quality assessment of Danshen Injection[J]. China Journal of Chinese Materia Medica,2019,44(17):3724−3731.

    [35]

    WANG L L, ZHANG Y B, SUN X Y, et al. Simultaneous quantitative analysis of main components in linderae reflexae radix with one single marker[J]. Journal of Liquid Chromatography & Amp Related Technologies,2016,39(8):422−427.

    [36]

    JING X, JIE L, JIAN L, et al. Determination of contents of catechins in oolong teas by quantitative analysis of multi-components via a single marker (QAMS) method[J]. Food Analytical Methods,2017,10(2):363−368. doi: 10.1007/s12161-016-0592-5

    [37]

    FENG Y M, LI Q, YANG L, et al. Simultaneous determination of osthol, columbianadin, and isoimperatorin in Angelicae pubescentis Radix by high-performance liquid chromatography (HPLC) using a quantitative analysis of multi-components by single marker (QAMS) calibration method[J]. Instrumentation Science & Amp; Technology,2020,48(5):550−560.

    [38]

    YU P, LI Q, FENG Y M, et al. Extraction and analysis of six effective components in glycyrrhiza uralensis fisch by deep eutectic solvents (DES) combined with quantitative analysis of multi-components by single marker (QAMS) method[J]. Molecules,2021,26(5):1310−1310. doi: 10.3390/molecules26051310

  • 期刊类型引用(3)

    1. 雷军,胡悦. 在线凝胶渗透色谱-气质联用法测定腌制鱼中7种N-亚硝胺类化合物的一测多评研究. 中国调味品. 2025(01): 201-205+215 . 百度学术
    2. 杨军林,田栋伟,王佳,赵雯宇,黄河鸥,范恩帝,朱安然,尤小龙,吴成,胡建锋,汪地强. 超高效液相色谱-质谱-一测多评法结合质量控制图在高温大曲生产过程品控分析中的应用. 食品与发酵工业. 2024(08): 290-302 . 百度学术
    3. 王彦蕊,潘立超,任玉龑,郭晓鹏,任海伟,范文广,李志忠. 基于Web of Science和CNKI的羊肚菌研究文献计量分析. 中国食用菌. 2022(07): 1-12 . 百度学术

    其他类型引用(4)

图(1)  /  表(7)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  49
  • PDF下载量:  19
  • 被引次数: 7
出版历程
  • 收稿日期:  2021-02-17
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2021-10-31

目录

/

返回文章
返回
x 关闭 永久关闭