• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法快速筛查及测定蜂蜜中20种植物源毒性成分

韦环, 刘珈玲, 廖强

韦环,刘珈玲,廖强. 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法快速筛查及测定蜂蜜中20种植物源毒性成分[J]. 食品工业科技,2021,42(17):285−293. doi: 10.13386/j.issn1002-0306.2020110234.
引用本文: 韦环,刘珈玲,廖强. 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法快速筛查及测定蜂蜜中20种植物源毒性成分[J]. 食品工业科技,2021,42(17):285−293. doi: 10.13386/j.issn1002-0306.2020110234.
WEI Huan, LIU Jialing, LIAO Qiang. Rapid Screening and Determination of 20 Plant-Derived Toxins in Honey by UPLC-Q-Exactive Quadrupole-Electrostatic Field Track Trap High Resolution Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(17): 285−293. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110234.
Citation: WEI Huan, LIU Jialing, LIAO Qiang. Rapid Screening and Determination of 20 Plant-Derived Toxins in Honey by UPLC-Q-Exactive Quadrupole-Electrostatic Field Track Trap High Resolution Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(17): 285−293. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110234.

超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法快速筛查及测定蜂蜜中20种植物源毒性成分

基金项目: 基于HRMS技术对蜂蜜中植物源性毒性成分的安全风险研究(KY201903)
详细信息
    作者简介:

    韦环(1984−),男,本科,研究方向:食品检验与质量标准研究,E-mail:287167166i@qq.com

    通讯作者:

    廖强(1985−),男,本科,副主任药师,研究方向:食品、药品质量分析及监管,E-mail:19972802@qq.com

  • 中图分类号: TS207.3

Rapid Screening and Determination of 20 Plant-Derived Toxins in Honey by UPLC-Q-Exactive Quadrupole-Electrostatic Field Track Trap High Resolution Mass Spectrometry

  • 摘要: 以超高效液相色谱-四极杆/静电场轨道阱高分辨质谱(ultra-performance liquid chromatography- tandem q-exactive quadrupole-electrostatic field track trap high resolution mass spectrometry,UPLC- Q-Exactive)建立蜂蜜中20种植物源毒性成分的快速筛查和测定方法,基于高分辨质谱的精准分子量和多级碎片信息确立了20种植物源毒性成分的质谱数据库。以纯水提取样品,以混合型阳离子交换固相萃取小柱(Mixed-mode polymeric strong cation exchange and reversed-phase column,MCX)净化,采用AQ-C18色谱柱(2.1 mm×100 mm, 1.9 μm)进行分离,乙腈和含0.1%甲酸的10 mmol/L甲酸铵水溶液作为流动相梯度洗脱,质谱采用全扫描/数据依赖的二级扫描模式(full scan data-dependent MS/MS acquisition mode,Full MS/ddMS2),外标法定量。结果显示,20种化合物在10.0~200.0 μg/L范围内,线性关系良好(r>0.99);该方法的检出限为0.4~6.9 μg/kg;在3个加标水平下,平均回收率为74.1% ~ 114.6%, 相对标准偏差(RSD)为0.2%~4.7%。该方法灵敏度高,准确可靠,操作简单,可对蜂蜜中20种植物源性毒性成分进行快速筛查和定量分析。
    Abstract: In this study, the method was applied in the rapid screening and determination of 20 plant-derived toxins in honey by ultra-performance liquid chromatography-tandem Q-Exactive quadrupole-electrostatic field track trap high resolution mass spectrometry (UPLC-Q-Exactive). According to precise molecular weight of compounds and multistage fragment ion information detected by UPLC-Q-Exactive, an in-house database of 20 plant-derived toxins was established. The sample was extracted by pure water, and purified on a mixed-mode polymeric strong cation exchange and reversed-phase column (MCX). The extract was separated on an AQ-C18 column (2.1 mm×100 mm, 1.9 μm) through a mobile phase composition of acetonitrile and water (containing 0.1% formic acid and 10 mmol/L ammonium formate) in gradient elution mode. The high resolution mass spectrometry data was simultaneously acquired in full scan data-dependent MS/MS acquisition mode(Full MS/ddMS2), and external standard calibration curves were used for quantification. Results and conclusions were drawn as follows. First, desirable linearities of 20 plant-derived toxins were evaluated among the peak area responses and concentrations in the range of 10.0 to 200.0 μg/L, and the correlative coefficients were over 0.99. The limits of detection were 0.4~6.9 μg/kg. The average recoveries of all the toxins were 74.1%~114.6% at three different levels, and the relative standard deviations (RSDs) ranged between 0.2%~4.7%. This method is sensitive, accurate, reliable and easy to operate, which can be used for rapid screening and quantitative analysis of the 20 plant- derived toxins in honey.
  • 我国《蜜蜂产品术语》(GB/T 20573-2006)对蜂蜜的定义为:是蜜蜂采集植物的花蜜,蜜露等分泌物,与自身分泌物结合后在巢脾内经过充分酿造而成的天然甜物质。不仅口感香甜,且具有润肺止咳、润肠通便、清热解毒等功效[1-2],因此深受人们的喜爱。蜂蜜本无毒,但在生产过程中被污染或蜜蜂采集有毒花蜜酿制而成的蜂蜜可能会引起中毒。尤其野生蜂蜜是食物中毒事件的主要致病因子之一[3-4]。建国以来广西、云南、贵州、福建多地都相继报道了食用野生蜂蜜中毒事件[5-7]。食用有毒蜂蜜后会引发一系列的中毒症状,如恶心、呕吐、腹泻、四肢麻木、血压下降、呼吸中枢麻痹等,严重将引发休克甚至死亡 [4,6,8],且中毒程度及症状与蜂蜜所含的毒素种类和含量密切相关。有毒蜂蜜中所含毒素主要来源于蜜蜂采集了有毒源性的植物花粉,如断肠草、雷公藤和狼毒等[6,8-10];雷公藤、断肠草、洋金花、乌头、千里光等所含毒性物质主要为生物碱和萜类化合物,如乌头中的二萜类生物碱:乌头碱[11];博落回中的异喹啉类生物碱:小檗碱、原阿片碱和别隐品碱[12];菊科(如千里光属和泽兰属)中的吡咯里西啶类生物碱:千里光宁碱、千里光菲林生物碱、倒千里光碱[10,13];胡蔓藤属中的吲哚类生物碱:钩吻碱、钩吻素已、胡蔓藤碱丙、胡蔓藤碱丁[14];马桑属中的萜类化合物马桑亭[15]等。

    《食品安全国家标准 蜂蜜》(GB 14963-2011)中明确规定“蜜蜂采集植物的花蜜、分泌物或蜜露应安全无毒,不得来源于雷公藤、博落回、狼毒等有毒蜜源植物。”但并未列出具体植物源毒性成分和相关检测方法。目前国内对植物中相关毒性物质的检测方法主要有液相色谱法[16-17]、气相色谱法[18]、酶联免疫吸附分析[19-20]、薄层层析测定法[21-22]、气相色谱-质谱法[23-25]、液相色谱-质谱法[15-16,26-28]等。液相色谱法检测灵敏度较低,适合于含量较高的样品如中草药;酶联免疫吸附分析法酶活性易损失、无法对各类成分进行准确定量分析;气相色谱-质谱法及液相色谱-质谱法均可实现微量衡量同时多组分分析,是目前司法鉴定主要方法,但气相色谱-质谱法不适用于热不稳性及高沸点化合物,液相色谱-质谱法可有效解决这样难题,但传统的三重四极杆质谱需要标准物质实现定性确证。高分辨质谱仪可依据其高质量准确度、高质量分辨率的全扫描数据在不需要标准物质的情况下实现定性确证,在食品定向和非定向筛查中应用广泛。

    目前我国关于蜂蜜的质量安全研究多以兽药残留[29]、农药残留[30]、重金属[31]和真伪鉴别[32-33]为主,对于蜂蜜中植物源性毒性成分的研究甚少,仅有少数对有毒蜜源性植物雷公藤、昆明山海棠和博落回中毒性成分及其分析方法进行了报道[6,10,34-35],但是研究成分单一,各方法相对独立且选择性差、定性能力弱。食物中毒作为突发公共卫生事件,往往需要在短时间内查明中毒原因,对于行踪不定的野生蜜蜂其蜜源难以通过其行踪来推断其蜜源植物。因此,迫切需要建立蜂蜜中植物源性多种毒性物质的快速筛查方法。四极杆/静电场轨道阱高分辨率质谱仪(Q-Exactive)具有良好的定性分析和高分辨率的特点,在单个分析周期内即可完成对样品高通量、高精度的一级、二级扫描,为化合物的准确鉴定提供了客观依据。

    本研究以固相萃取法纯化样品,应用高效液相色谱-四极杆/静电场轨道阱高分辨率质谱联用技术,建立蜂蜜中20种植物源毒性成分的快速筛查和测定方法,基于高分辨质谱的精准分子量和多级碎片信息确立了20种植物源毒性成分的质谱数据库。该方法快速、准确、通量高,为进一步开展蜂蜜溯源,安全性评价和监测评估食用蜂蜜中毒提供参考,保障了蜂蜜的食用安全和提升了质量控制水平。

    标准物质野百合碱(CAS:315-22-0,纯度99.48%)、钩吻碱(CAS:509-15-9,纯度98.19%)、东莨菪碱氢溴酸盐(CAS:114-49-8,纯度98.7%)、倒千里光碱(CAS:480-54-6,纯度98.02%)、钩吻素子(CAS:1358-76-5,纯度98.34%)、千里光宁(CAS:130-01-8,纯度99.48%)、钩吻碱己(CAS:82354-38-9,纯度99.53%)、马桑亭(CAS:91653-75-7,纯度98.96%)、闹羊花毒素II(CAS: 26116-89-2,纯度99.79%)、闹羊花毒素V(CAS:37720-86-8,纯度99.82%)、原阿片碱(CAS:130-86-9,纯度99.56%)、A-别隐品碱(CAS:485-91-6,纯度98.58%)、次乌头碱(CAS:6900-87-4,纯度99.04%)、乌头碱(CAS:302-27-2,纯度98.52%) 美国斯坦福化学公司;春千里光碱(CAS:72755-25-0,纯度99.72%)、春千里光碱N氧化物(CAS:101687-28-9,纯度99.87%)、N-氧化芝麻菜叶千里光(CAS:123864-94-8,纯度99.35%)、胡蔓藤碱乙(CAS:82375-29-9,纯度98%) 德国PhytoLab公司;千里光菲灵碱(CAS:480-81-9,纯度99.53%) 成都德思特生物技术有限公司;闹羊花毒素III(CAS:26342-66-5,纯度98.6%) 上海源业生物科技有限公司);SPE小柱:混合型阳离子交换固相萃取小柱(MCX,60 mg,3 cc) 美国沃特斯有限公司;甲醇、乙腈、甲酸 均为色谱纯,德国默克公司;其余 均为分析纯;实验用样品为蜜博士百花蜂蜜(批号20190115) 广西蜜博士蜂业有限责任公司生产,经预检验样品中不含有上述20种化合物),其余66批均购于广西南宁、崇左、贵港、来宾、钦州等地农贸市场或蜜蜂养植基地。

    Ultimate 3000超高效液相色谱仪-Q-Exactive四极杆/静电场轨道阱高分辨质谱仪 美国Thermo Fisher Scientific 公司;XS205 DU电子分析天平 瑞士梅特勒-托利多公司;Multi Reax全自动振荡仪 德国Heidolph公司。

    准确称取野百合碱、钩吻碱、东莨菪碱氢溴酸盐、倒千里光碱、钩吻素子、千里光宁、钩吻碱己、马桑亭、闹羊花毒素II、闹羊花毒素III、闹羊花毒素V、原阿片碱、别隐品碱、次乌头碱、乌头碱、春千里光碱、春千里光碱N氧化物、N-氧化芝麻菜叶千里光、胡蔓藤碱乙、千里光菲灵碱等20种标准物质各约10 mg(精确至0.1 mg),分别置于10 mL容量瓶中,用甲醇溶解并定容至刻度,配制成约1.0 mg/mL的标准储备溶液。分别精密量取各标准储备溶液1 mL,置于同一100 mL容量瓶中,用甲醇稀释并定容至刻度,得到10 μg/mL混合标准中间溶液。

    称取1 g(精确至0.01 g)样品,置于15 mL聚丙烯离心管中,加入水5 mL,振荡使溶解,将所有溶液通过混合型阳离子交换固相萃取小柱使用前依次用5 mL甲醇、5 mL水活化)中,弃去洗脱液,然后用10 mL水淋洗小柱,弃去,再用9 mL 5%氨化甲醇进行洗脱,收集洗脱液至10 mL容量瓶中,使用5%氨化甲醇定容,混匀后经0.22 μm有机相滤膜过滤,即得。

    色谱柱:Thermo GOLD AQ-C18柱(2.1 mm×100 mm,1.9 μm);柱温:30 ℃;进样体积:2 μL;流速:0.3 mL/min;流动相:A为含0.1%甲酸的10 mmol/L甲酸铵溶液,B为0.1%甲酸乙腈。梯度洗脱程序:0.0~5.0 min,5%~20% B;5.0~10.0 min,20%~45% B;10.0~13.0 min,45%~90% B;13.0~14.0 min,90 % B;14.0~15.0 min,90%~5% B;15.0~20.0 min,5% B。

    离子源采用HESI源(heated ESI),喷雾电压为3.5 kV(+)/3.0 kV(−),透镜电压为50 V,离子传输管温度:320 °C,鞘气流量:35 arb;辅助气体流量:10 arb;辅助气温度:300 °C。扫描方式:采用正、负离子同时扫描,采集模式:Full MS/dd-MS2 模式,其中一级全扫描的分辨率:70000 FWHM,扫描范围:m/z 50~1200,自动增益(AGC):3×106,最大驻留时间:100 ms;二级扫描分辨率:17500 FWHM,自动增益(AGC):2×105,最大驻留时间: 50 ms;质荷比窗口宽度(Isolation Window):m/z 2.0;顶点激发(Apex tigger):4~8 s;排除同位素峰(Exclude isotopes)设为“on”,动态排除(Dynamic Exclusion)设为6.0 s,归一化碰撞能量(NCE)为20%、40%、60%。20种物质其他条件详见表1

    表  1  20种植物源性毒性成分的分子式、保留时间、精确质量数、质量数偏差及主要二级离子
    Table  1.  Molecular formula, retention time, precise mass number, mass number deviation and main secondary ion mass number of 20 plant-derived toxic
    序号化合物名称英文名分子式分子量保留时间(min)电离模式母离子理论质量数母离子精确质量数质量数偏差/10−6主要二级离子
    1野百合碱 MonocrotalineC16H23NO6325.362.44[M+H]+326.15981326.159391.3120.08101;237.13599;
    194.11775
    2N-氧化芝麻菜叶千里光Erucifoline N-oxideC18H23O7N365.384.02[M+H]+366.15473366.153932.2118.06548;136.07585;
    94.06566
    3东莨菪碱 ScopolamineC17H21NO4384.264.84[M+H]+304.15433304.153831.6138.09146;156.10205;
    121.06499
    4钩吻碱gelsemine free baseC20H22N2O2323.185.02[M+H]+323.17540323.174871.6236.10727;70.06586;
    195.0684
    5倒千里光碱 RetrorsineC18H25NO6351.395.13[M+H]+352.17546352.174871.7120.0811;138.09152;
    324.18033
    6N-去氧千里光菲灵碱Seneciphylline N-oxideC18H23NO5333.395.58[M+H]+334.1649334.164341.7306.16986;120.08105;
    138.09143
    7闹羊花毒素IIIRhodojaponinⅢC20H32O6368.466.10[M+H]+297.18491297.184391.7297.18439;251.17896;
    197.13234
    8钩吻素子KoumineC20H22N2O306.416.17[M+H]+307.18049307.179782.3238.12248;220.11275;
    176.10713
    9马桑亭CoriatinC15H20O62966.27[M-H]-295.11871295.11883−0.4201.05582;175.07654;
    219.06688
    10千里光宁(千里光碱)SenecionineC18H25NO5335.396.54[M+H]+336.18055336.179852.1120.08086;308.18628;
    138.09155
    11春千里光碱SenecivernineC18H25O5N335.396.65[M+H]+336.18055336.179862.1120.08083;308.18628;
    308.18496
    12春千里光碱 N-氧化物Senecivernine N-oxideC18H25O6N351.396.84[M+H]+352.17546352.175071.1120.08109;136.07513;
    94.06559
    13钩吻碱己GelsenicineC19H22N2O3326.397.03[M+H]+327.17032327.169931.2296.15202;265.13367;
    98.98467
    14闹羊花毒素VRhodojaponinⅤC22H34O7410.58.18[M+Na]+433.21967433.219570.2415.20880;92.41895;
    373.19678
    15原阿片碱ProtopineC20H19NO5353.378.18[M+H]+354.13360354.133221.1188.07082;149.05986;
    275.07037
    16闹羊花毒素IIRhodojaponinⅡC22H34O7410.518.27[M+H]+297.18491297.184391.7279.17426;251.17934;
    223.14804
    17胡蔓藤碱乙HumantenineC21H26N2O3354.458.40[M+H]+355.20162355.200971.8337.19101;144.08089;
    294.14886
    18别隐品碱AllocryptopineC21H23NO5369.418.55[M+H]+370.16490370.164620.8188.07071;290.09372;
    206.08128
    19次乌头碱 HypaconitineC33H45NO10615.7211.03[M+H]+616.31162616.311080.9105.03375;338.17490;
    556.29041
    20乌头碱AconitineC34H47NO11645.7411.16[M+H]+646.32219646.321461.1105.03396;586.30121;
    368.1857
    下载: 导出CSV 
    | 显示表格

    精取“1.2.1”标准使用液1.0 mL,置于100 mL容量瓶中用甲醇定容至刻度;按“1.2.3”条件进样,将得到的高分辨质谱数据通过Xcalibar软件得到目标物的准确质量数、保留时间、二级碎片离子等信息,将信息输入到筛查软件TraceFinder下,建立质谱数据库(Compound Database)。

    本实验采用Full MS/dd-MS2 模式,选择母离子(见表1)进行外标法定量。

    由于本次实验20种化合物来源于多种植物,且大部分为生物碱类成分,极性差异较大。故本实验分别考察了Thermo GOLD AQ-C18、Agilent HILIC(150 mm×2.1 mm,3 μm)、ACE Excel2 C18-PFP(150 mm×2.1 mm,3 μm)三种类型的色谱柱,结果Thermo GOLD AQ-C18在20种化合物中分离效果和峰形最佳;在流动相的考察中,结果发现乙腈离子化能力强于甲醇,且基线噪音较低;0.1%甲酸乙腈能有效改善峰形及离子化效果,故选0.1%甲酸乙腈作为有机相;水相中加入0.1%甲酸后离子化效率、化合物响应值更高;加入10 mmol/L甲酸铵后能兼顾负离子扫描时也得到较好的响应,故最终0.1%甲酸(含10 mmol/L甲酸铵)作为水相流动相。

    本实验使用了Full MS/dd-MS2采集模式,该模式首先进行一级全扫描,然后对指定的前级离子做进一步的二级扫描。在实验室中,对一级全扫描的质谱参数先后考察了35000、70000及140000的分辨率对质谱信号的影响,结果显示使用140000的分辨率一级离子的灵敏度会显著降低,这可能是由于过高的分辨率会显著降低扫描速度,造成一级扫描点数不足,造成色谱峰形变差,影响分析,故选择了一级质谱扫描采用70000的分辨率。

    在1.2.3质谱条件下,闹羊花毒素II、闹羊花毒素III易发生离子源内裂解,闹羊花毒素II m/z=410.22990考虑到其结构可能在离子源内裂解失去-C2H3O2, 形成了稳定的双键得到m/z=297.18439(见图1);闹羊花毒素III m/z=329.19587在离子源内裂解失去4个H2O后形成了稳定的双键,得到m/z=297.18439(见图2)。闹羊花毒素V[M+H]+电离模式下没有加氢峰,而在[M+Na]+电离模式下有极强的加钠峰;马桑亭在[M-H]电离模式下能得到很好的减氢峰,其它17种植物源性毒性成分在[M+H]+电离模式下均能得到很好的加氢峰。

    图  1  闹羊花毒素II的裂解图
    Figure  1.  Chinese azalea flowers toxins II cracking figure
    图  2  闹羊花毒素IIII的裂解图
    Figure  2.  Chinese azalea flowers toxins IIII cracking figure

    由于20种植物源性毒性成分多数生物碱等碱性物质,故本实验选择了混合型阳离子交换固相萃取小柱(MCX)、混合型弱阳离子交换固相萃取小柱(PCX)、Waters Oasis HLB三种类型对生物碱有效好保留的固相萃取小柱进行前处理考察。结果发现混合型阳离子交换固相萃取小柱(MCX)对20种植物源性毒性成分具有高的选择性和灵敏度,均获得了很好的净化效果;而Waters Oasis HLB对千里光菲灵碱的保留较差,回收率只有62.81%;从图3中能看出 PCX对钩吻碱、千里光菲灵碱、钩吻素子、千里光宁(千里光碱)、春千里光碱、钩吻碱己、原阿片碱、胡蔓藤碱乙、别隐品碱、次乌头碱、乌头碱保留较差,回收率都无法满足实验要求;故首选了Waters Oasis MCX混合型阳离子交换固相萃取小柱进行样品提取净化。

    图  3  20种植物源性毒性成分过不同萃取小柱的回收率
    Figure  3.  Recovery rate of 20 plant-derived toxic ingredients through different extraction column

    蜂蜜属于高复杂度过饱和混合物,而糖类作为其主要化学成分,占蜂蜜干物质的95%左右,其中葡萄糖和果糖含量最高,蔗糖其次[36]。在淋洗溶剂的选择上,对甲醇和水进行考察,结果发现使用甲醇进行淋洗会导致马桑亭、闹羊花毒素V、闹羊花毒素II、闹羊花毒素III等成分跟随淋洗液共流出,使得回收率降低。而水对糖类物质溶解性较好,且用水淋洗时目标成分随淋洗液共流出较少,故洗择水作为淋洗液。进而对淋洗溶剂的量进行了考察,分别考察了使用5、10、15 mL水进行淋洗,结果发现15 mL水洗脱会导致雷公藤乙素回收降低10%左右,10 mL水能够将糖类物质洗脱完全,且目标成分获得较好的回收,回收率结果均大于70%

    因目标成分均为生物碱类物质,在碱性条件下较易洗脱,故选择5%氨化甲醇作为洗脱溶剂。分别考察了5、9、15 mL 5%氨化甲醇3种洗脱剂对目标分析物的影响,综合考虑目标分析物的洗脱效果和节省溶剂等因素,最后选择9 mL 5%氨化甲醇作为洗脱溶剂,能够达到最佳洗脱效果。

    基质效应普遍存在于质谱检测中,表现为离子增强效应或离子抑制效应,从而导致定量结果有一定的偏差。通常基质效应消除方法有固相萃取净化、同位素内标法、稀释法等[37],而通过对比基质匹配标液与相同浓度的纯溶剂标液的仪器响应值来考察基质效应,计算公式为基质效应=基质匹配标液响应值/纯溶剂标液响应值,若两者比值在85%~115%,则基质效应可忽略[38]。本实验采用固相萃取净化的方法来消除基质效应的影响,如图4所示,经过MCX净化之后,两者比值在85%~115%之间,其基质效应得到有效消除。因此,本文采用甲醇配制标准曲线,外标法定量。

    图  4  20种植物源性毒性成分的基质效应
    Figure  4.  The matrix effects of 20 plant-derived toxic ingredients

    通过TraceFinder软件建立的数据库与样品的保留时间、主要二级碎片、同位素分布和二级质谱图相识度比对等多种方法,综合判断,以得到准确定性结果,避免假阳性检测结果的出现。实现多组分无对照同时筛查的定性分析。具体分析物质的准确质量数及碎片离子、保留时间、电离模式如表1 所示;20种植物源性毒性成分的提取离子流色谱图见图5

    图  5  20种植物源性毒性成分的提取离子流色谱图
    注:A:正离子模式下;B:负离子模式下;1:野百合碱;2:N-氧化芝麻菜叶千里光;3:东莨菪碱;4:钩吻碱;5:倒千里光碱;6:N-去氧千里光菲灵碱;7:闹羊花毒素III;8:钩吻素子;9:马桑亭;10:千里光宁(千里光碱);11:春千里光碱;12:春千里光碱 N-氧化物;13:钩吻碱己;14:闹羊花毒素V;15:原阿片碱;16:闹羊花毒素II;17:胡蔓藤碱乙;18:别隐品碱;19:次乌头碱;20:乌头碱。
    Figure  5.  Extracted ion flow chromatograms of 20 plant-derived toxic ingredients

    分别精密吸取“1.2.1”项下溶液0.01、0.02、0.05、0.10、0.20 mL至10 mL容量瓶中,使用甲醇溶液稀释成浓度约为10.0、20.0、50. 0、100. 0、200.0 μg /L 的标准工作溶液。按1.2.3方法测定。用外标法定量,以峰面积为纵坐标(y)、质量浓度为横坐标(x,μg/L)进行线性回归,求得回归方程。再分别吸取“1.2.1”溶液,逐步稀释,按照“1.2.3”色谱条件测定;取信噪比为3:1的质量浓度为检出限,详见表2,结果表明20种待测化合物在各自范围内呈良好的线性关系,r均大于0.995。

    表  2  20种植物源性毒性成分的线性及相关系数和检出限
    Table  2.  Linearities and correlation coefficients and detection limits of 20 plant-derived toxic ingredients
    成分回归方程线性范围
    (μg/L)
    相关系数r检出限(μg/kg)
    野百合碱 y=1.74024e+006x+3.87433e+00611.05~221.040.99931.1
    N-氧化芝麻菜叶千里光 y=6.26145e+006x+2.76492e+00610.20~204.000.99901.0
    钩吻碱y=6.26145e+006x+2.76492e+00610.32~206.400.9980.5
    东莨菪碱y=1.73966e+006x−1.19978e+0069.07~181.420.9970.5
    倒千里光碱y=1.18342e+006x−6.64955e+0069.18~183.680.9960.5
    千里光菲灵碱y=1.04594e+006x+1.19731e+0079.32~186.320.9971.9
    钩吻素子y=2.3337e+006x−1.01106e+00710.08~201.700.9950.5
    千里光宁y=6.31671e+006x−7.06935e+00612.04~240.760.9960.6
    春千里光碱y=6.31229e+006x−7.62245e+00610.65~213.000.9950.5
    春千里光碱 N-氧化物 y=2.35604e+006x+5.50655e+0069.07~181.360.9950.5
    钩吻碱己y=5.63862e+006x+4.18264e+00610.85~216.970.9980.5
    马桑亭y=31547.1x+2987699.88~197.520.9954.9
    闹羊花毒素Vy=73731.2x−35169713.87~277.480.9956.9
    原阿片碱y=6.25039e+006x+2.3877e+00710.71~214.260.9980.5
    胡蔓藤碱乙y=5.20333e+006x+5.00048e+0068.45~168.960.9960.4
    别隐品碱y=7.00083e+006x+2.07491e+00610.51~210.180.9980.5
    闹羊花毒素IIy=747810x−2.43661e+00611.88~237.700.9960.6
    闹羊花毒素IIIy=12885.6x−20331.39.04~180.840.9974.5
    次乌头碱y=1.83927e+006x+3.36015e+00610.07~201.450.9980.5
    乌头碱y=1.47927e+006x+5.31952e+00611.38~227.580.9970.6
    下载: 导出CSV 
    | 显示表格

    精密吸取“1.2.1”项下对照品溶液,连续进样6次,记录峰面积,结果测得20种化合物峰面积的RSD范围在0.5%~2.3%之间,表明仪器精密度良好。

    分别称取1.00 g样品六份,置于15 mL聚丙烯具塞离心管中,分别添加0.02 mL的混合标准中间溶液(加入量约200 ng),按“1.2.2”项下制备并依法测定。结果测得野百合碱、钩吻碱、东莨菪碱氢溴酸盐、倒千里光碱、钩吻素子、千里光宁、钩吻碱己、马桑亭、闹羊花毒素II、闹羊花毒素III、闹羊花毒素V、原阿片碱、A-别隐品碱、次乌头碱、乌头碱、春千里光碱、春千里光碱N氧化物、N-氧化芝麻菜叶千里光、胡蔓藤碱乙、千里光菲灵碱的RSD分别为0.8%、1.3%、1.6%、1.1%、0.8%、1.9%、2.1%、1.4%、0.8%、0.6%、1.3%、0.7%、0.5%、2.4%、1.8%、1.6%、1.1%、0.5%、1.8%、2.0%,表明方法重复性良好。

    取“1.2.2”项下同一样品溶液,分别在制备后0、2、4、8、12和24 h按“1.2.3”色谱条件进样,记录相应的色谱峰面积,结果样品中20种峰面积的RSD范围在0.8%~2.1%之间,表明供试品溶液在24 h内稳定性良好。

    分别称取1.00 g 样品18份,置于15 mL聚丙烯具塞离心管中,分别添加0.01、0.02、0.1 mL的混合标准中间溶液各6份,按“1.2.2”操作,进行低、中、高3个浓度水平的加标回收试验,按1.2.3操作进样分析,计算加样回收率(结果见表3);结果如表所示各植物源性毒性成分回收率介于74.1%~114.6%之间,表明本检测方法的准确度高,可满足实验室的日常分析需求。

    表  3  20种植物源性毒性成分的平均回收率和相对标准偏差(n=6)
    Table  3.  Aaverage recoveries and relative standard deviations of 20 kinds of plant-derived toxic ingredients (n = 6)
    化合物添加水平(μg/kg)平均回收率(%)RSD(%)
    野百合碱

    110.587.080.8
    22186.217.1
    110590.334.7
    N-氧化芝麻菜叶千里光

    10285.172.9
    20489.551.6
    102094.331.9
    钩吻碱

    90.7100.480.91
    181.4100.420.92
    90796.791.7
    东莨菪碱

    91.8104.012.2
    183.6102.650.5
    91894.660.2
    倒千里光碱

    93.2106.751.5
    186.4103.021.1
    932102.182.1
    千里光菲灵碱

    100.875.354.4
    201.684.540.8
    100886.292.1
    钩吻素子

    100.8107.240.3
    201.6101.810.6
    1008100.140.2
    千里光宁(千里光碱)

    120.4107.860.6
    240.8100.880.4
    120498.451.6
    春千里光碱

    106.5108.390.5
    213103.180.4
    1065100.880.4
    春千里光碱 N-氧化物

    90.784.870.5
    181.489.014.4
    90794.860.6
    钩吻碱己

    108.599.831.9
    21797.671.3
    108595.691.1
    马桑亭

    98.875.783.9
    197.680.230.3
    98875.751.2
    闹羊花毒素V

    138.7114.561.7
    277.4106.372.7
    1387110.481.4
    原阿片碱

    107.187.361.9
    214.292.611.2
    107195.362.6
    胡蔓藤碱乙

    84.593.763.7
    16993.033.6
    84594.521.8
    别隐品碱

    105.195.583.7
    210.292.711.7
    105192.870.3
    闹羊花毒素II

    118.8107.350.6
    237.6103.290.4
    118899.41.6
    闹羊花毒素III

    90.483.194.9
    180.8107.462.2
    90497.544.4
    次乌头碱

    100.790.31.1
    201.487.12.4
    100785.110.3
    乌头碱

    113.874.063.3
    227.675.410.4
    113880.810.6
    下载: 导出CSV 
    | 显示表格

    按“1.2”方法将66批蜂蜜样品进行测定,结果发现在8批蜂蜜样品中检出东莨菪碱,含量在20~1400 μg/kg之间;其中2批蜂蜜中另检出倒千里光碱,含量在48~150 μg/kg之间;2批蜂蜜中检出N-氧化千里光菲灵碱含量在49~80 μg/kg之间,详情见表4,结果表明,在蜂蜜中检出有毒化合物占12%,在蜂蜜中存在一定的食品安全风险。

    表  4  样品测定结果(μg/kg)
    Table  4.  Results of random test (μg/kg)
    样品东莨菪碱含量(μg/kg)倒千里光碱含量(μg/kg)N-氧化千里光菲灵碱含量(μg/kg)
    金秀大瑶山冬蜜148.5048.11/
    金秀大瑶山新蜜119.35//
    南宁新蜜291.28//
    来宾壮乡人枇杷蜜111.94//
    崇左百花蜜1407.54146.4674.31
    钦州百花蜜130.75//
    钦州百花蜜287.00/49.81
    大新百花蜜23.36//
    注:/表示未检出。
    下载: 导出CSV 
    | 显示表格

    本研究建立了以纯水提取,混合型阳离子交换固相萃取小柱(MCX)净化,结合超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法对蜂蜜中的20种植物源性毒性成分进行测定,其中检出了东莨菪碱、倒千里光碱和N-氧化千里光菲灵碱,提示食用蜂蜜还是存在一定的食品安全风险。方法的准确度和精密度结果都符合要求,证明该方法在对蜂蜜进行20种植物源性毒性成分的定性定量分析时提供可靠、重复、并且准确的结果;满足日常检测和风险筛查要求。

  • 图  1   闹羊花毒素II的裂解图

    Figure  1.   Chinese azalea flowers toxins II cracking figure

    图  2   闹羊花毒素IIII的裂解图

    Figure  2.   Chinese azalea flowers toxins IIII cracking figure

    图  3   20种植物源性毒性成分过不同萃取小柱的回收率

    Figure  3.   Recovery rate of 20 plant-derived toxic ingredients through different extraction column

    图  4   20种植物源性毒性成分的基质效应

    Figure  4.   The matrix effects of 20 plant-derived toxic ingredients

    图  5   20种植物源性毒性成分的提取离子流色谱图

    注:A:正离子模式下;B:负离子模式下;1:野百合碱;2:N-氧化芝麻菜叶千里光;3:东莨菪碱;4:钩吻碱;5:倒千里光碱;6:N-去氧千里光菲灵碱;7:闹羊花毒素III;8:钩吻素子;9:马桑亭;10:千里光宁(千里光碱);11:春千里光碱;12:春千里光碱 N-氧化物;13:钩吻碱己;14:闹羊花毒素V;15:原阿片碱;16:闹羊花毒素II;17:胡蔓藤碱乙;18:别隐品碱;19:次乌头碱;20:乌头碱。

    Figure  5.   Extracted ion flow chromatograms of 20 plant-derived toxic ingredients

    表  1   20种植物源性毒性成分的分子式、保留时间、精确质量数、质量数偏差及主要二级离子

    Table  1   Molecular formula, retention time, precise mass number, mass number deviation and main secondary ion mass number of 20 plant-derived toxic

    序号化合物名称英文名分子式分子量保留时间(min)电离模式母离子理论质量数母离子精确质量数质量数偏差/10−6主要二级离子
    1野百合碱 MonocrotalineC16H23NO6325.362.44[M+H]+326.15981326.159391.3120.08101;237.13599;
    194.11775
    2N-氧化芝麻菜叶千里光Erucifoline N-oxideC18H23O7N365.384.02[M+H]+366.15473366.153932.2118.06548;136.07585;
    94.06566
    3东莨菪碱 ScopolamineC17H21NO4384.264.84[M+H]+304.15433304.153831.6138.09146;156.10205;
    121.06499
    4钩吻碱gelsemine free baseC20H22N2O2323.185.02[M+H]+323.17540323.174871.6236.10727;70.06586;
    195.0684
    5倒千里光碱 RetrorsineC18H25NO6351.395.13[M+H]+352.17546352.174871.7120.0811;138.09152;
    324.18033
    6N-去氧千里光菲灵碱Seneciphylline N-oxideC18H23NO5333.395.58[M+H]+334.1649334.164341.7306.16986;120.08105;
    138.09143
    7闹羊花毒素IIIRhodojaponinⅢC20H32O6368.466.10[M+H]+297.18491297.184391.7297.18439;251.17896;
    197.13234
    8钩吻素子KoumineC20H22N2O306.416.17[M+H]+307.18049307.179782.3238.12248;220.11275;
    176.10713
    9马桑亭CoriatinC15H20O62966.27[M-H]-295.11871295.11883−0.4201.05582;175.07654;
    219.06688
    10千里光宁(千里光碱)SenecionineC18H25NO5335.396.54[M+H]+336.18055336.179852.1120.08086;308.18628;
    138.09155
    11春千里光碱SenecivernineC18H25O5N335.396.65[M+H]+336.18055336.179862.1120.08083;308.18628;
    308.18496
    12春千里光碱 N-氧化物Senecivernine N-oxideC18H25O6N351.396.84[M+H]+352.17546352.175071.1120.08109;136.07513;
    94.06559
    13钩吻碱己GelsenicineC19H22N2O3326.397.03[M+H]+327.17032327.169931.2296.15202;265.13367;
    98.98467
    14闹羊花毒素VRhodojaponinⅤC22H34O7410.58.18[M+Na]+433.21967433.219570.2415.20880;92.41895;
    373.19678
    15原阿片碱ProtopineC20H19NO5353.378.18[M+H]+354.13360354.133221.1188.07082;149.05986;
    275.07037
    16闹羊花毒素IIRhodojaponinⅡC22H34O7410.518.27[M+H]+297.18491297.184391.7279.17426;251.17934;
    223.14804
    17胡蔓藤碱乙HumantenineC21H26N2O3354.458.40[M+H]+355.20162355.200971.8337.19101;144.08089;
    294.14886
    18别隐品碱AllocryptopineC21H23NO5369.418.55[M+H]+370.16490370.164620.8188.07071;290.09372;
    206.08128
    19次乌头碱 HypaconitineC33H45NO10615.7211.03[M+H]+616.31162616.311080.9105.03375;338.17490;
    556.29041
    20乌头碱AconitineC34H47NO11645.7411.16[M+H]+646.32219646.321461.1105.03396;586.30121;
    368.1857
    下载: 导出CSV

    表  2   20种植物源性毒性成分的线性及相关系数和检出限

    Table  2   Linearities and correlation coefficients and detection limits of 20 plant-derived toxic ingredients

    成分回归方程线性范围
    (μg/L)
    相关系数r检出限(μg/kg)
    野百合碱 y=1.74024e+006x+3.87433e+00611.05~221.040.99931.1
    N-氧化芝麻菜叶千里光 y=6.26145e+006x+2.76492e+00610.20~204.000.99901.0
    钩吻碱y=6.26145e+006x+2.76492e+00610.32~206.400.9980.5
    东莨菪碱y=1.73966e+006x−1.19978e+0069.07~181.420.9970.5
    倒千里光碱y=1.18342e+006x−6.64955e+0069.18~183.680.9960.5
    千里光菲灵碱y=1.04594e+006x+1.19731e+0079.32~186.320.9971.9
    钩吻素子y=2.3337e+006x−1.01106e+00710.08~201.700.9950.5
    千里光宁y=6.31671e+006x−7.06935e+00612.04~240.760.9960.6
    春千里光碱y=6.31229e+006x−7.62245e+00610.65~213.000.9950.5
    春千里光碱 N-氧化物 y=2.35604e+006x+5.50655e+0069.07~181.360.9950.5
    钩吻碱己y=5.63862e+006x+4.18264e+00610.85~216.970.9980.5
    马桑亭y=31547.1x+2987699.88~197.520.9954.9
    闹羊花毒素Vy=73731.2x−35169713.87~277.480.9956.9
    原阿片碱y=6.25039e+006x+2.3877e+00710.71~214.260.9980.5
    胡蔓藤碱乙y=5.20333e+006x+5.00048e+0068.45~168.960.9960.4
    别隐品碱y=7.00083e+006x+2.07491e+00610.51~210.180.9980.5
    闹羊花毒素IIy=747810x−2.43661e+00611.88~237.700.9960.6
    闹羊花毒素IIIy=12885.6x−20331.39.04~180.840.9974.5
    次乌头碱y=1.83927e+006x+3.36015e+00610.07~201.450.9980.5
    乌头碱y=1.47927e+006x+5.31952e+00611.38~227.580.9970.6
    下载: 导出CSV

    表  3   20种植物源性毒性成分的平均回收率和相对标准偏差(n=6)

    Table  3   Aaverage recoveries and relative standard deviations of 20 kinds of plant-derived toxic ingredients (n = 6)

    化合物添加水平(μg/kg)平均回收率(%)RSD(%)
    野百合碱

    110.587.080.8
    22186.217.1
    110590.334.7
    N-氧化芝麻菜叶千里光

    10285.172.9
    20489.551.6
    102094.331.9
    钩吻碱

    90.7100.480.91
    181.4100.420.92
    90796.791.7
    东莨菪碱

    91.8104.012.2
    183.6102.650.5
    91894.660.2
    倒千里光碱

    93.2106.751.5
    186.4103.021.1
    932102.182.1
    千里光菲灵碱

    100.875.354.4
    201.684.540.8
    100886.292.1
    钩吻素子

    100.8107.240.3
    201.6101.810.6
    1008100.140.2
    千里光宁(千里光碱)

    120.4107.860.6
    240.8100.880.4
    120498.451.6
    春千里光碱

    106.5108.390.5
    213103.180.4
    1065100.880.4
    春千里光碱 N-氧化物

    90.784.870.5
    181.489.014.4
    90794.860.6
    钩吻碱己

    108.599.831.9
    21797.671.3
    108595.691.1
    马桑亭

    98.875.783.9
    197.680.230.3
    98875.751.2
    闹羊花毒素V

    138.7114.561.7
    277.4106.372.7
    1387110.481.4
    原阿片碱

    107.187.361.9
    214.292.611.2
    107195.362.6
    胡蔓藤碱乙

    84.593.763.7
    16993.033.6
    84594.521.8
    别隐品碱

    105.195.583.7
    210.292.711.7
    105192.870.3
    闹羊花毒素II

    118.8107.350.6
    237.6103.290.4
    118899.41.6
    闹羊花毒素III

    90.483.194.9
    180.8107.462.2
    90497.544.4
    次乌头碱

    100.790.31.1
    201.487.12.4
    100785.110.3
    乌头碱

    113.874.063.3
    227.675.410.4
    113880.810.6
    下载: 导出CSV

    表  4   样品测定结果(μg/kg)

    Table  4   Results of random test (μg/kg)

    样品东莨菪碱含量(μg/kg)倒千里光碱含量(μg/kg)N-氧化千里光菲灵碱含量(μg/kg)
    金秀大瑶山冬蜜148.5048.11/
    金秀大瑶山新蜜119.35//
    南宁新蜜291.28//
    来宾壮乡人枇杷蜜111.94//
    崇左百花蜜1407.54146.4674.31
    钦州百花蜜130.75//
    钦州百花蜜287.00/49.81
    大新百花蜜23.36//
    注:/表示未检出。
    下载: 导出CSV
  • [1] 欧阳军. 不同蜜源蜂蜜的医疗保健功效[J]. 中国蜂业,2018,69(12):50−52. [Ou Yang J. Health care efficacy of honey from different nectar sources[J]. Apiculture of China,2018,69(12):50−52. doi: 10.3969/j.issn.0412-4367.2018.12.026
    [2] 王金宝. 蜂蜜入药好治病[J]. 蜜蜂杂志,2019,39(1):39−41. [Wang J B. Honey is a good medicine for treating disease[J]. Journal of Bee,2019,39(1):39−41. doi: 10.3969/j.issn.1003-9139.2019.01.027
    [3] 国家卫生计生委办公厅关于2015年全国食物中毒事件情况的通报[J]. 中国食品卫生杂志, 2016, 28(3): 290, 391, 408.

    National Health and Family Planning Commission of the People's Republic of China. Analysis of the Food Poisoning in China, 2015[J]. Chinese Journal of Food Hygiene, 2016, 28(3): 290, 391, 408.

    [4]

    Aryal B D, Niraula S, Malla G B, et al. Cardiovascular collapse due to wild honey Intoxication: A case report[J]. Health Renaissance,2017,13(2):170−172. doi: 10.3126/hren.v13i2.17568

    [5] 刘志涛, 赵江, 张强, 等. 2012-2017年云南省有毒动植物中毒事件分析[J]. 中国食品卫生杂志,2018,30(5):477−480. [Liu Z T, Zhao J, Zhang Q, et al. The epidemiology of poisonous animal and plant poisoning in Yunnan province from 2012 to 2017[J]. Chinese Journal of Food Hygiene,2018,30(5):477−480.
    [6]

    Zhang Q, Chen X G, Chen S A, et al. Fatal honey poisoning caused by tripterygium wilfordii hook f in southwest China: A case series[j]. Wilderness and Environmental Medicine, 2016, 27(2): 271–273.

    [7] 周莉, 袁玉伟, 王伟, 等. 福建省有毒蜜源植物雷公藤初步调查[J]. 中国蜂业,2017,68(2):41−43. [Zhou L, Yuan Y W, Wang W, et al. Preliminary investigation of toxic nectar plants-Tripterygium wilfordii in Fujian[J]. Apiculture of China,2017,68(2):41−43. doi: 10.3969/j.issn.0412-4367.2017.02.017
    [8] 郑亚杰, 刘秀斌, 林莉, 等. 蜂蜜中植物源性毒性成分的研究进展[J]. 食品科学,2019,40(3):307−316. [Zheng Y J, Liu X B, Lin L, et al. Plant-derived toxins in honey: A review[J]. Food Science,2019,40(3):307−316. doi: 10.7506/spkx1002-6630-20171103-043
    [9] 郑亚杰, 刘秀斌, 彭晓英, 等. 我国有毒蜜源植物及毒性[J]. 蜜蜂杂志,2019,39(2):1−8. [Zheng Y J, Liu X B, Peng X Y, et al. Toxic nectar plants and toxicity[J]. Journal of Bee,2019,39(2):1−8.
    [10]

    Hungerford N L, Carter S J, Anuj S R, et al. Analysis of pyrrolizidine alkaloids in queensland honey: Using low temperature chromatography to resolve stereoisomers and identify botanical sources by UHPLC-MS/MS[J]. Toxins,2019,726(11):1−23.

    [11]

    Gao X, Hu J, Zhang X, et al. Research progress of aconitine toxicity and forensic analysis of aconitine poisoning[J]. Forensic Sciences Research,2020,5(1):1−7. doi: 10.1080/20961790.2020.1744400

    [12] 陈伟, 张锐, 雷思敏, 等. 博落回化学成分及其药理活性研究进展[J]. 中国实验方剂学杂志,2020,26(3):251−258. [Chen W, Zhang R, Lei S M, et al. Advances in chemical constituents and bioactivities of macleaya cordata[J]. Chinese Journal of Experimental Traditional Medical Formulae,2020,26(3):251−258.
    [13]

    Mulder P P J, Lopez P, Castellari M B D, et al. Occurrence of pyrrolizidine alkaloids in animal- and plant-derived food: Results of a survey across Europe[J]. Food Additives and Contaminants, Part A. Chemistry, Analysis, Control, Exposure And Risk Assessment,2018,35(6):1231−1231.

    [14]

    Sun M X, Cui Y, Li Y, et al. Indole alkaloids from Gelsemium elegans[J]. Phytochemistry,2019,162:232−240. doi: 10.1016/j.phytochem.2019.03.016

    [15] 张秀尧, 蔡欣欣, 张晓艺, 等. 超高效液相色谱-三重四极杆质谱法测定血浆和尿液中马桑亭和马桑宁[J]. 色谱,2019,37(2):37−42. [Zhang X Y, Cai X X, Zhang X Y, et al. Determination of coriatin and corianin in plasma and urine using ultra-performance liquid chromatography-triple quadrupole mass spectrometry[J]. Chinese Journal of Chromatography,2019,37(2):37−42.
    [16]

    Pasupuleti S R, Gangapatnam S, Matcha B. U-HPLC (ultra-high-pressure liquid chromatography) separation of indole alkaloid strychnine[J]. World Journal of Pharmaceutical Research, 6(13): 1022−1032.

    [17] 谌赛男, 王河山, 曾靖舒, 等. HPLC法同时测定钩吻茎中胡蔓藤碱丙等6个生物碱的含量[J]. 药物分析杂志,2017,37(4):595−601. [Chen S N, Wang H S, Zeng J S, et al. Simultaneous determination of 6 major alkaloids including humantenidine in the stem of gelsemium elegans benth, by HPLC[J]. Chinese Journal of Pharmaceutical Analysis,2017,37(4):595−601.
    [18] 陈鸿义, 陈小华. 胡蔓藤生物碱类的毛细管柱气相色谱分析[J]. 色谱,1990(6):383−385. [Chen H Y, Chen X H. Determination of the alkaloids of gelsemium elegans banth by capillary gas chromatography[J]. Chinese Journal of Chromatography,1990(6):383−385.
    [19]

    Wang Z, Zheng P, Wang J, et al. Indirect competitive enzyme-linked immunosorbent assay based on a broad-spectrum monoclonal antibody for tropane alkaloid detection in pig urine, pork and cereal flours[J]. Food Chemistry,2020,337:127617.

    [20] 袁帅, 许玉, 黄磊, 等. 乌头属药材中单酯型乌头碱的ELISA法测定[J]. 中国医药工业杂志,2016,47(7):897−901. [Yuan S, Xu Y, Huang L, et al. Determination of mono-ester alkaloids in aconitum plants by ELISA[J]. Chinese Journal of Pharmaceuticals,2016,47(7):897−901.
    [21] 陈燕乐, 杨广民, 唐昭山, 等. 博落回中四种生物碱的薄层鉴别研究[J]. 中国兽药杂志,2020,54(4):30−35. [Chen Y L, Yang G M, Tang Z S, et al. Study on TLC identification of 4 alkaloids in macleaya cordata and m. microcarpa[J]. Chinese Journal of Veterinary Drug,2020,54(4):30−35.
    [22]

    Szabó B, Lakatos A, Koszegi T, et al. Thin-layer chromatography-densitometry and liquid chromatography analysis of alkaloids in leaves of papaver somniferum under stress conditions[J]. Journal of AOAC International,2005,88(5):1571−1577. doi: 10.1093/jaoac/88.5.1571

    [23] 罗达龙. 固相萃取-气质联用结合同位素峰形校正检索技术分析钩吻中的钩吻碱和钩吻碱子[J]. 药物分析杂志,2016,36(1):96−101. [Luo D L. Analysis of gelsemine and koumine in gelsemium elegans by SPE-GC/MS-CLIPS[J]. Chinese Journal of Pharmaceutical Analysis,2016,36(1):96−101.
    [24]

    Kowalczyk E, Kwiatek K. Determination of pyrrolizidine alkaloids in selected feed materials with gas chromatography-mass spectrometry[J]. Food Additives and Contaminants Part A Chemistry Analysis Control Exposure and Risk Assessment,2017,34(5):853−863.

    [25] 麦沛明, 余胜兵, 吴西梅, 等. 分散液-液微萃取-气相色谱-质谱法同时测定中毒样品中有毒生物碱和鼠药[J]. 分析化学,2015(2):282−287. [Mai P M, Yu S B, Wu X M, et al. Simultaneous determination of toxic alkaloids and rat poisons in toxic samples by dispersive liquid-liquid micro-extraction combined with gas chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry,2015(2):282−287.
    [26]

    Konishi T, Akaki K, Hatano K. Determination of hyoscyamine and scopolamine in serum and urine of humans by liquid chromatography with tandem mass spectrometry[J]. Shokuhinseigaku Zasshi,2008,49(4):266−271.

    [27]

    Zheng W, Yoo K H, Choi J M, et al. A modified QuEChERS method coupled with liquid chromatography-tandem mass spectrometry for the simultaneous detection and quantification of scopolamine, L-hyoscyamine, and sparteine residues in animal-derived food products[J]. Journal of Advanced Research,2019,27(15):95−102.

    [28]

    Du N N, Zhou W J, Jin H L, et al. Characterization of tropane and cinnamamide alkaloids from Scopolia tangutica by high- performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry[J]. Journal of Separation Science,2019,42(6):1163−1173. doi: 10.1002/jssc.201801201

    [29] 刘彦钊, 张丽丽, 江飞. UPLC-ESI-MS/MS法测定蜂蜜中兽药残留[J]. 现代食品,2020(16):173−175. [Liu Y Z, Zhang L L, Jiang F. Determination of veterinary drug residues in honey by UPLC-ESI-MS/MS[J]. Modern Food,2020(16):173−175.
    [30]

    Gawel M, Kiljanek T, Niewiadowska A, et al. Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry[J]. Food Chemistry,2019,282(1):36−47.

    [31]

    Bartha S, Taut I, Goji G, et al. Heavy metal content in polyfloralhoney and potential health risk:A case study of copșa mică, romania[J]. International Journal of Environmental Research,2020,17(5):1507.

    [32]

    Xu J Z, Liu X H, Wu B, et al. A comprehensive analysis of 13C isotope ratios data of authentic honey types produced in China using the EA-IRMS and LC-IRMS[J]. Journal of Food Science and Technology -Mysore,2019,57(4):1216−1232.

    [33] 谢博, 傅红, 杨方. UPLC-Q-Exactive四极杆-静电场轨道阱高分辨质谱联用鉴别掺假蜂蜜[J]. 食品工业科技,2020,41(2):244−251. [Xie B, Fu H, Yang F. Identification of adulterated honey by UPLC-Q-exactive quadrupole-electrostatic field track trap high resolution mass spectrometry[J]. Science and Technology of Food Industry,2020,41(2):244−251.
    [34] 雷美康, 彭芳, 祝子铜, 等. 超高效液相色谱-串联质谱法同时测定蜂蜜中雷公藤红素和雷公藤次碱[J]. 食品科学,2015,36(12):218−220. [Lei M K, Peng F, Zhu Z T, et al. Determination of triptolide and wilforine in honey by ultra performance liquid chromatography-tandem mass spectrometry[J]. Food Science,2015,36(12):218−220. doi: 10.7506/spkx1002-6630-201512041
    [35] 雷美康, 彭芳, 丁涛, 等. 固相萃取净化-超高效液相色谱-串联质谱法测定蜂蜜中雷公藤次碱[J]. 色谱,2015,33(1):65−67. [Lei M K, Peng F, Ding T, et al. Determination of wilforine in honey using solid phase extraction purification and ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography,2015,33(1):65−67. doi: 10.3724/SP.J.1123.2014.08022
    [36] 陈赛果. 蜂蜜化学成分及其主要生物学功能研究进展分析[J]. 现代食品,2018(13):53−54, 57. [Chen S G. Research progress on chemical constituents and main biological functions of honey[J]. Modern Food,2018(13):53−54, 57.
    [37] 孙文闪, 周婷婷, 诸骏杰, 等. 固相萃取净化超高液相色谱-串联质谱测定鱼粉中的组胺[J]. 粮食与饲料工业,2020(3):65−69. [Sun W S, Zhou T T, Zhu J J, et al. Determination of histamine in fish meal by SPE UPLC-MS/MS[J]. Cereal & Feed Industry,2020(3):65−69.
    [38] 蒋湘, 韦环, 黄燕红, 等. 超高效液相色谱-串联质谱法测定麦冬、山药和菊花中14种植物生长调节剂[J]. 中国药师,2020,23(2):264−269. [Jiang X, Wei H, Huang Y H, et al. Determination of 14 plant growth regulators in Ophiopogon Japonicas, Chinese Yam and Chrysanthemum by UPLC-MS/MS[J]. China Pharmacist,2020,23(2):264−269. doi: 10.3969/j.issn.1008-049X.2020.02.012
  • 期刊类型引用(1)

    1. 王继岚,乔巨慧,刘颖,赵雨初,张思雨,王思明,刘美辰. 人参提取物延缓果蝇衰老的作用及机制研究. 食品工业科技. 2023(03): 406-413 . 本站查看

    其他类型引用(0)

图(5)  /  表(4)
计量
  • 文章访问数:  638
  • HTML全文浏览量:  115
  • PDF下载量:  58
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-11-23
  • 网络出版日期:  2021-07-08
  • 刊出日期:  2021-08-31

目录

/

返回文章
返回
x 关闭 永久关闭