• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

小麦肽的抗氧化与抗疲劳作用的研究

王倩倩, 杜鹃, 陈鸣, 冯凤琴

王倩倩,杜鹃,陈鸣,等. 小麦肽的抗氧化与抗疲劳作用的研究[J]. 食品工业科技,2021,42(17):357−365. doi: 10.13386/j.issn1002-0306.2020100066.
引用本文: 王倩倩,杜鹃,陈鸣,等. 小麦肽的抗氧化与抗疲劳作用的研究[J]. 食品工业科技,2021,42(17):357−365. doi: 10.13386/j.issn1002-0306.2020100066.
WANG Qianqian, DU Juan, CHEN Ming, et al. Study on the Antioxidant and Anti-fatigue Effect of Wheat Peptides[J]. Science and Technology of Food Industry, 2021, 42(17): 357−365. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100066.
Citation: WANG Qianqian, DU Juan, CHEN Ming, et al. Study on the Antioxidant and Anti-fatigue Effect of Wheat Peptides[J]. Science and Technology of Food Industry, 2021, 42(17): 357−365. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100066.

小麦肽的抗氧化与抗疲劳作用的研究

基金项目: 国家高技术研究发展计划(863计划)项目(2013AA102207)
详细信息
    作者简介:

    王倩倩(1990−),女,博士研究生,研究方向:蛋白肽的功能评价,E-mail:1032369802@qq.com

    通讯作者:

    冯凤琴(1964−),女,博士,教授,研究方向:新型食品添加剂及功能配料,E-mail:fengfq@zju.edu.cn

  • 中图分类号: TS201.4

Study on the Antioxidant and Anti-fatigue Effect of Wheat Peptides

  • 摘要: 目的:探讨小麦肽的体外抗氧化活性和体内抗疲劳作用。方法:通过H2O2诱导小鼠成纤维细胞L929构建氧化应激损伤模型,测定损伤后L929细胞的存活率、乳酸脱氢酶(lactic dehydrogenase, LDH)、超氧化物歧化酶(superoxide dismutase, SOD)和谷胱甘肽过氧化物酶(glutathione peroxide dismutase, GSH-Px)活力以及丙二醛(MDA)含量,从细胞水平评价小麦肽的抗氧化作用。然后通过力竭游泳和自由泳实验,测定力竭游泳时间、乳酸(lactic acid, LA)、尿素氮(blood urea nitrogen, BUN)和肌糖原(muscle glycogen, MG)含量、SOD和GSH-Px活力以及MDA含量,来评价小麦肽的体内抗疲劳和抗氧化作用。结果:小麦肽浓度在0.4~0.8 mg/mL时对L929细胞的H2O2损伤有极显著的保护作用(P<0.01);与模型组相比,小麦肽浓度为0.6和0.8 mg/mL时的LDH活力分别显著下降了20.79%和19.67%(P<0.05),SOD活力分别显著(P<0.05)和极显著(P<0.01)提高了83.21%和95.19%,GSH-Px活力分别提高了28.69%和32.14%,MDA含量分别显著下降了25.91%和26.99%(P<0.01) 。体内抗疲劳实验表明,与对照组相比,2个剂量组的小鼠力竭游泳时间分别极显著延长了72.93%和91.73%(P<0.01),LA含量分别极显著下降了24.65%和25.16%(P<0.01),BUN含量分别极显著(P<0.01)和显著(P<0.05)下降了19.74%和17.78%,MG含量分别极显著提高了48.63%和56.85%(P<0.01);体内抗氧化结果表明,2个剂量组的SOD和 GSH-Px活力分别极显著提高了20.54%、25.91%和29.79%、35.77%(P<0.01),MDA含量分别极显著下降了23.08%和21.46%(P<0.01)。Pearson相关性分析表明小麦肽的体内抗疲劳与抗氧化作用高度相关。结论:小麦肽具有显著的抗氧化和缓解疲劳作用,且抗氧化活性与抗疲劳作用高度相关。
    Abstract: Objective: To investigate the in vitro antioxidant activity and in vivo anti-fatigue effect of wheat peptides. Methods: The oxidative stress model was established by treating L929 cells with H2O2. Then the cell survival rate, the activity of lactic dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione peroxide dismutase (GSH-Px), and the content of malondialdehyde (MDA) were measured to evaluate the antioxidant activity of wheat peptides in vitro. In addition, the exhaustive swimming and freestyle swimming test was assessed. Then the exhaustive swimming time, the content of lactic acid (LA), blood urea nitrogen (BUN), muscle glycogen (MG) and MDA, the activity of SOD and GSH-Px were measured to study the anti-fatigue and antioxidant of wheat peptides in vivo. Results: The wheat peptides in the concentration range from 0.4 to 0.8 mg/mL could protect L929 cells against H2O2-induced oxidative damage by highly significantly increasing the survival rate(P<0.01). Compared to the model group, the activity of LDH of the wheat peptides at 0.6 and 0.8 mg/mL significantly decreased by 20.79% and 19.67%(P<0.05) , the activity of SOD was significantly (P<0.05) and highly significantly(P<0.01) increased by 83.21% and 95.19%, the activity of GSH-Px increased by 28.69% and 32.14%, and the content of MDA significantly decreased by 25.91% and 26.99%(P<0.05). Compared with the control group, the exhaustive swimming time of the wheat peptides at 2 and 8 mg/mL was significantly increased by 72.93% and 91.73%(P<0.01) , the content of LA significantly decreased by 24.65% and 25.16%(P<0.01) , the content of BUN highly significantly (P<0.01) and significantly(P<0.05) decreased by 19.74% and 17.78%, and the content of MG highly significantly increased by 48.63% and 56.85%(P<0.01) . At the same time, the activity of SOD and GSH-Px was highly significantly increased by 20.54% and 25.91%, 29.79% and 35.77%(P<0.01) , and the content of MDA was highly significantly decreased by 23.08% and 21.46%(P<0.01) . Pearson correlation analysis showed that the antifatigue effect of wheat peptides was highly correlated with its antioxidant activity. Conclusion: Wheat peptide had significant antioxidant activity and anti-fatigue effect, and the anti-fatigue effect of wheat peptide was correlated with antioxidant activity.
  • 图  1   小麦肽的相对分子质量分布

    Figure  1.   Relative molecular weight distribution of wheat peptides

    图  2   小麦肽对L929细胞氧化损伤的保护作用

    注:与对照组相比,*代表差异显著P<0.05,**代表差异极显著P<0.01;与模型组相比,#代表差异显著P<0.05,##代表差异极显著P<0.01,图3同。

    Figure  2.   Protective effect of wheat peptides against H2O2 induced oxidative damage in L929 cells

    图  3   小麦肽对L929细胞氧化损伤LDH、SOD、GSH-Px和MDA水平的影响

    Figure  3.   Effects of wheat peptides against H2O2 induced oxidative damage in L929 cells on the SOD, GSH-Px, MDA and LDH

    图  4   小麦肽对小鼠力竭游泳时间、乳酸、尿素氮和肌糖原水平的影响

    注:与对照组相比,*代表差异显著P<0.05,**代表差异极显著P<0.01,图5同。

    Figure  4.   Effect of wheat peptides on the exhaustive swimming time, LA, BUN and MG

    图  5   小麦肽对小鼠SOD、GSH-Px和MDA水平的影响

    Figure  5.   Effect of wheat peptides on the SOD, GSH-Px and MDA

    表  1   动物实验设计

    Table  1   Experimental design of animals

    组别灌胃物剂量(mg/g)小鼠数量(只)
    对照蒸馏水同等体积16
    阳性乳清蛋白216
    低剂量小麦肽216
    高剂量小麦肽816
    下载: 导出CSV

    表  2   小麦肽的氨基酸组成

    Table  2   Amino acid composition of wheat peptides

    氨基酸种类含量(g/100 g)氨基酸种类含量(g/100 g)
    天冬氨酸1.76酪氨酸3.46
    谷氨酸4.61缬氨酸3.98
    谷氨酰胺22.91甲硫氨酸1.46
    丝氨酸2.55半胱氨酸0.39
    甘氨酸2.83异亮氨酸3.81
    组氨酸1.00亮氨酸5.43
    精氨酸3.36苯丙氨酸4.25
    苏氨酸1.59赖氨酸1.12
    丙氨酸2.23总量
    76.66
    脯氨酸9.92
    下载: 导出CSV

    表  3   小麦肽的相对分子质量分布

    Table  3   Relative molecular weight distribution of wheat peptides

    分子量(Da)>100005000~100003000~5000180~3000<180
    峰面积比例(%)13.3511.464.6362.717.85
    下载: 导出CSV

    表  4   小麦肽对小鼠体重的影响

    Table  4   Effect of wheat peptides on body weight in mice

    组别
    体重(g)
    开始结束增重
    对照25.52±1.1032.70±2.227.18±1.78
    阳性25.76±1.0334.03±2.658.27±1.86
    低剂量25.63±0.6933.65±1.538.02±1.19
    高剂量24.92±1.2633.46±3.068.54±2.28
    下载: 导出CSV

    表  5   体内抗氧化活性与缓解疲劳作用的Pearson相关系数

    Table  5   Pearson correlation analysis between antioxidant activity and anti-fatigue activities in vivo

    项目力竭游泳时间LA含量BUN含量MG含量
    SOD活力0.986*−0.976*−0.961*0.986*
    GSH-Px活力0.992**−0.984*−0.969*0.978*
    MDA含量−0.966*0.996**0.999**−0.939
    注:*代表差异显著,P<0.05,**代表差异极显著,P<0.01。
    下载: 导出CSV
  • [1] 吴良文, 陈宁. 运动性疲劳的机制与大豆多肽对其调控的研究进展[J]. 食品科学,2019,40(17):302−308. [Wu L W, Chen N. Progress in understanding the mechanism of exercise-induced fatigue and its regulation by soybean peptide[J]. Food Science,2019,40(17):302−308. doi: 10.7506/spkx1002-6630-20190118-219
    [2]

    Wang L, Zhang H L, Lu R, et al. The decapeptide CMS001 enhances swimming endurance in mice[J]. Peptides,2008,29(7):1176−1182. doi: 10.1016/j.peptides.2008.03.004

    [3]

    Harman D. Aging: A theory based on free radical and radiation chemistry[J]. The Journals of Gerontology,1956,11(3):298−300.

    [4]

    Elliott J L, Lal S. Blood pressure, sleep quality and fatigue in shift working police officers: Effects of a twelve hour roster system on cardiovascular and sleep health[J]. International Journal of Environmental Research and Public Health,2016,13(2):172. doi: 10.3390/ijerph13020172

    [5]

    Trudel X, Brisson C, Milot A, et al. Effort-reward imbalance at work and 5-year changes in blood pressure: The mediating effect of changes in body mass index among 1400 white-collar workers[J]. International Archives of Occupational and Environmental Health,2016,89(8):1229−1238. doi: 10.1007/s00420-016-1159-x

    [6]

    Zhang Y Y, Ryu B, Cui Y H, et al. A peptide isolated from Hippocampus abdominalis improves exercise performance and exerts anti-fatigue effects via AMPK/PGC-1α pathway in mice[J]. Journal of Functional Foods,2019,61:103489. doi: 10.1016/j.jff.2019.103489

    [7]

    Guo Z B, Lin D Q, Guo J J, et al. In vitro antioxidant activity and in vivo anti-fatigue effect of sea horse (Hippocampus) peptides[J]. Molecules,2017,22(3):482. doi: 10.3390/molecules22030482

    [8]

    Liu R, Wu L, Du Q, et al. Small molecule oligopeptides isolated from walnut (Juglans regia L.) and their anti-fatigue effects in mice[J]. Molecules,2018,24(1):45. doi: 10.3390/molecules24010045

    [9]

    Van Loon L J C, Saris W H M, Kruijshoop M, et al. Maximizing post exercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures[J]. American Journal of Clinical Nutrition,2000,72(1):106−111. doi: 10.1093/ajcn/72.1.106

    [10]

    Zhang J X, Wen C T, Li C Z, et al. Antioxidant peptide fractions isolated from wheat germ protein with subcritical water extraction and its transport across Caco-2 cells[J]. Journal of Food Science,2019,84(8):2139−2146. doi: 10.1111/1750-3841.14720

    [11] 于兰兰, 刘伟, 周雅琳, 等. 小麦低聚肽对急性酒精中毒小鼠抗氧化功能的影响[J]. 食品科学,2020,41(7):159−163. [Yu L L, Liu W, Zhou Y L, et al. Effects of wheat oligopeptides on antioxidant function of mice with acute alcoholism[J]. Food Science,2020,41(7):159−163. doi: 10.7506/spkx1002-6630-20190321-285
    [12] 曾瑜, 潘兴昌, 张立实, 等. 小麦低聚肽对小鼠解酒功能的评价[J]. 现代预防医学,2019,46(7):1255−1259. [Zeng Y, Pan X C, Zhang L S, et al. Evaluation of wheat oligopeptide on hangover function in mice[J]. Modern Preventive Medicine,2019,46(7):1255−1259.
    [13] 代卉, 施用晖, 韩芳, 等. 小麦肽免疫活性及抗氧化作用的研究[J]. 天然产物研究与开发,2009,21(3):473−476. [Dai H, Shi Y H, Han F, et al. Study on wheat peptides on immune modulating and antioxidant effect[J]. Natural Product Research and Development,2009,21(3):473−476. doi: 10.3969/j.issn.1001-6880.2009.03.028
    [14]

    Zheng Z Q, Yang X X, Liu J, et al. Effects of wheat peptide supplementation on anti-fatigue and immunoregulation during incremental swimming exercise in rats[J]. RSC Advances,2017,7(69):43345−43355. doi: 10.1039/C7RA07860A

    [15]

    Sun S L, Zhang G W, Mu H Y, et al. The mixture of corn and wheat peptide prevent diabetes in NOD mice[J]. Journal of Functional Foods,2019,56:163−170. doi: 10.1016/j.jff.2019.03.020

    [16] 潘兴昌, 印虹, 谷瑞增, 等. 小麦肽对大鼠氮代谢以及胃肠黏膜结构和功能的影响[J]. 食品科学,2013,34(5):264−269. [Pan X C, Yin H, Gu R Z, et al. Effect of wheat peptide on the nitrogen metabolism and gastrointestinal mucosal structure of rats[J]. Food Science,2013,34(5):264−269.
    [17]

    Kan J T, Cheng J R, Xu L M, et al. The combination of wheat peptides and fucoidan protects against chronic superficial gastritis and alters gut microbiota: a double-blinded, placebo-controlled study[J]. European Journal of Nutrition,2019,59(4):1655.

    [18]

    Hao G X, Cao W H, Hao J M, et al. In vitro antioxidant activity and in vivo anti-fatigue effects of oyster (Ostrea plicatula gmelin) peptides prepared using neutral proteinase[J]. Food Science and Technology Research,2013,19(4):623−631. doi: 10.3136/fstr.19.623

    [19] 王延州, 刘丽娅, 钟葵, 等. 高谷氨酰胺低聚小麦肽制备用酶的筛选[J]. 现代食品科技,2014,30(2):177−181, 187. [Wang Y Z, Liu L Y, Zhong K, et al. Enzymes screening for preparation of high-glutamine oligopeptide from gluten[J]. Modern Food Science and Technology,2014,30(2):177−181, 187.
    [20]

    Guezennec C Y, Abdelmalkia A, Seirurier B, et al. Effects of prolonged exercise on brain ammonia and amino acids[J]. International Journal of Sports Medicine,1998,19(5):323−327. doi: 10.1055/s-2007-971925

    [21] 赵源, 刘爱国, 吴子健, 等. 碱性蛋白酶酶解谷朊粉制备谷朊粉蛋白多肽的研究[J]. 食品工业科技,2014,35(18):216−220. [Zhao Y, Liu A G, Wu Z J, et al. Study on the production of gluten peptides from enzymaticing hydrolysis of wheat gluten with alkaline protease[J]. Science and Technology of Food Industry,2014,35(18):216−220.
    [22] 吕艳. 酶解小麦蛋白制取谷氨酰胺活性肽的研究[D]. 杭州: 浙江大学, 2005.

    Lv Y. Study on the active glutamine peptides made from wheat protein by enzymatic hydrolysis[D]. Hangzhou: Zhejiang University, 2005.

    [23] 丁树慧, 齐曼婷, 齐斌, 等. 低值海洋鱼低聚肽抗氧化和抗疲劳活性[J]. 食品科学,2019,40(1):163−169. [Ding S H, Qi M T, Qi B, et al. Antioxidant and anti-fatigue activity of marine trash fish-derived oligopeptide[J]. Food Science,2019,40(1):163−169.
    [24]

    Kumer J P, Mandal B B. Antioxidant potential of mulberry and non-mulberry silk sericin and its implications in biomedicine[J]. Free Radical Biology and Medicine,2017,108:803−818. doi: 10.1016/j.freeradbiomed.2017.05.002

    [25]

    Zieglerer F, Seddiki L, Marion-letellier R, et al. Effects of l-glutamine supplementation alone or with antioxidants on hydrogen peroxide-induced injury in human intestinal epithelial cells[J]. European e-Journal of Clinical Nutrition and Metabolism,2011,6(4):e211−e216. doi: 10.1016/j.eclnm.2011.07.001

    [26]

    Poole L B. The basics of thiols and cysteines in redox biology and chemistry[J]. Free Radical Biology and Medicine,2015,80:148−157. doi: 10.1016/j.freeradbiomed.2014.11.013

    [27]

    Ihara H, Kakihana Y, Yamakage A, et al. 2-Oxo-histidine-containing dipeptides are functional oxidation products[J]. Journal of Biological Chemistry,2019,294(4):1279−1289. doi: 10.1074/jbc.RA118.006111

    [28]

    Manta B, Gladyshev V N. Regulated methionine oxidation by monooxygenases[J]. Free Radical Biology and Medicine,2017,109:141−155. doi: 10.1016/j.freeradbiomed.2017.02.010

    [29]

    Torkova A, Koroleva O, Khrameeva E, et al. Structure-functional study of tyrosine and methionine dipeptides: An approach to antioxidant activity prediction[J]. International Journal of Molecular Sciences,2015,16(10):25353−25376. doi: 10.3390/ijms161025353

    [30]

    Matsui R, Honda R, Kanome M, et al. Designing antioxidant peptides based on the antioxidant properties of the amino acid side-chains[J]. Food Chemistry,2018,245:750−755. doi: 10.1016/j.foodchem.2017.11.119

    [31]

    Dei Piu L, Tassoni A, Serrazanetti D I, et al. Exploitation of starch industry liquid by-product to produce bioactive peptides from rice hydrolyzed proteins[J]. Food Chemistry,2014,155:199−206. doi: 10.1016/j.foodchem.2014.01.055

    [32]

    Luo C H, Xu X R, Wei X C, et al. Natural medicines for the treatment of fatigue: Bioactive components, pharmacology, and mechanisms[J]. Pharmacological Research,2019,148:104409. doi: 10.1016/j.phrs.2019.104409

    [33] 张羽, 汪芳, 翁泽斌, 等. 麦胚清蛋白抗氧化肽的筛选及对细胞氧化损伤的保护作用[J]. 食品科学,2020. [Zhang Y, Wang F, Weng Z B, et al. Screening of wheat germ albumin-derived antioxidant peptides and its protective activity against cellular oxidative damage[J]. Food Science,2020. doi: 10.7506/spkx1002-6630-20200901-012
    [34]

    Hu L S, Fang X Z, Du M H, et al. Anti-fatigue effect of blended Camellia oleifera abel tea oil and Ge-132 in mice[J]. Food and Nutrition Sciences,2015,6(15):1479−1487. doi: 10.4236/fns.2015.615152

    [35]

    Zhang X Y, Jing S, Lin H J, et al. Anti-fatigue effect of anwulignan via the NRF2 and PGC-1α signaling pathway in mice[J]. Food & Function,2019,10(12):7755−7766.

    [36]

    Tung Y T, Wu M F, Lee M C, et al. Antifatigue activity and exercise performance of phenolic-rich extracts from Calendula officinalis, Ribes nigrum, and Vaccinium myrtillus[J]. Nutrients,2019,11(8):1715. doi: 10.3390/nu11081715

    [37]

    Liu Y Y, Liu C J. Antifatigue and increasing exercise performance of Actinidia arguta crude alkaloids in mice[J]. Journal of Food and Grug Analysis,2016,24(4):738−745. doi: 10.1016/j.jfda.2016.03.001

    [38]

    Yang D K, Lee S J, Adam G O, et al. Aralia continentalis kitagawa extract attenuates the fatigue induced by exhaustive exercise through inhibition of oxidative stress[J]. Antioxidants,2020,9(5):379. doi: 10.3390/antiox9050379

    [39]

    Li D, Ren J W, Zhang T, et al. Anti-fatigue effects of small-molecule oligopeptides isolated from Panax quinquefolium L. in mice[J]. Food & Function,2018,9(8):4266−4273.

    [40]

    You L J, Ren J Y, Yang B, et al. Antifatigue activities of loach protein hydrolysates with different antioxidant activities[J]. Journal of Agricultural and Food Chemistry,2012,60(50):12324−12331. doi: 10.1021/jf3037825

图(5)  /  表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-11
  • 网络出版日期:  2021-07-01
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回