• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

UPLC-MS/MS法同时测定动物源性食品中37种兽药残留

谭高好, 王承业, 郑金明, 尹青春, 徐彬, 吴基任

谭高好,王承业,郑金明,等. UPLC-MS/MS法同时测定动物源性食品中37种兽药残留[J]. 食品工业科技,2021,42(17):225−234. doi: 10.13386/j.issn1002-0306.202009030.
引用本文: 谭高好,王承业,郑金明,等. UPLC-MS/MS法同时测定动物源性食品中37种兽药残留[J]. 食品工业科技,2021,42(17):225−234. doi: 10.13386/j.issn1002-0306.202009030.
TAN Gaohao, WANG Chengye, ZHENG Jinming, et al. Simultaneous Determination of 37 Veterinary Drugs in Animal-Derived Foods by Ultra-high Performance Liquid Chromatography-tandem Mass Spectrometry(UPLC-MS/MS)[J]. Science and Technology of Food Industry, 2021, 42(17): 225−234. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.202009030.
Citation: TAN Gaohao, WANG Chengye, ZHENG Jinming, et al. Simultaneous Determination of 37 Veterinary Drugs in Animal-Derived Foods by Ultra-high Performance Liquid Chromatography-tandem Mass Spectrometry(UPLC-MS/MS)[J]. Science and Technology of Food Industry, 2021, 42(17): 225−234. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.202009030.

UPLC-MS/MS法同时测定动物源性食品中37种兽药残留

详细信息
    作者简介:

    谭高好(1990−),男,研究生,工程师,研究方向:色谱质谱、农食产品检测,E-mail:851555606@qq.com

    通讯作者:

    吴基任(1983−),男,本科,高级工程师,研究方向:色谱质谱、农食产品检测,E-mail:86777984@qq.com

  • 中图分类号: TS207.3

Simultaneous Determination of 37 Veterinary Drugs in Animal-Derived Foods by Ultra-high Performance Liquid Chromatography-tandem Mass Spectrometry(UPLC-MS/MS)

  • 摘要: 建立了QuEChERS净化结合超高效液相色谱-串联质谱(UPLC-MS/MS)法同时测定动物源性食品中37种兽药残留量的分析方法。样品经1%甲酸/乙腈沉淀蛋白提取,N-丙基乙二胺(PSA)、C18吸附剂、NH2吸附剂净化后;然后,通过Waters ACQUITY UPLC BEH C18(1.7 μm,2.1 mm×100 mm)色谱柱分离,采用0.1%甲酸/水溶液-甲醇为流动相进行梯度洗脱;电喷雾正离子模式电离,采用多反应监测模式(MRM)检测,基质匹配标准曲线外标法定量。结果表明,37种目标物在1.0~200 μg/L范围内线性相关系数(r)均在0.9980以上。在3个不同浓度添加水平下,样品回收率在70.1%~97.7%之间,方法RSD为0.9%~5.6%,定量限(S/N≥10)为0.01~0.54 μg/kg。采用本方法对农贸市场购买的152批动物源性食品样品进行检测,3批罗非鱼均检出磺胺嘧啶和甲氧苄氨嘧啶,其余样品均未检出。该方法操作简便、快速,具有良好的精密度、准确度和定量限,适用于动物性食品中硝基咪唑类及其代谢物和磺胺类的快速检测。
    Abstract: A method for the determination of 37 veterinary drugs in animal-derived foods with QuEChERS by UPLC-MS /MS was established. The sample was extracted by 1% formic acid-acetonitrile precipitated protein, purified by PSA, C18, NH2 adsorbent. The separation was performed on Waters ACQUITY UPLC BEH C18 (1.7 μm, 2.1 mm×100 mm) column. The mobile phase performed on 0.1% formic acid aqueous solution-methanol by gradient elution, electrospray ionization source (ESI) was applied and operated in the positive mode. Multiple reaction monitoring (MRM) mode was used to monitor ions. Matrix matching standard curve quantification by external standard method. Results showed that, an excellent linear relationship in the range of 1.0~200 μg/L was observed for all the analytes with a correlation coefficient larger than 0.9980. The recoveries at three concentrations ranged from 70.1% to 97.7%, with the RSD from 0.9% to 5.6%. The limits of quantification of the method were 0.01~0.54 μg/kg. This method was used to detect 152 batches of animal-derived food samples which purchased at the farmer’s market. Sulfadiazine and trimethoprim were detected in 3 batches of Oreochromis mossambicus, the remaining samples were not detected. The method was simple, rapid and had good precision, accuracy and quantitative limit. It would be suitable for the rapid determination of nitroimidazoles and their metabolites, sulfonamides in animal-derived foods.
  • 磺胺类药物(Sulfonamides,SAs)和硝基咪唑类药物(Nitroimidazoles,NMZs)因具有性质稳定、抗菌谱广、高效、疗效好、价格低和使用方便等优点而被广泛应用到养殖业和畜牧业上,用来治疗和预防动物的疾病感染[1-4]、促进动物的生长[5-6]。SAs易在动物组织中富集进而通过食物链传递的方式危害人体健康,具体表现在破坏人的造血系统,导致毒性损伤及激素障碍变态反应等危害[7-9]。NMZs长期摄入则会引起消化道不良反应,严重时会出现如变态反应、过敏性休克、泌尿系统损害等[10],动物源性食品中的磺胺类和硝基咪唑类药物的残留对消费者身体健康构成直接威胁。

    我国和欧盟将硝基咪唑类药物列为动物性食品不得检出的对象。《GB 31650-2019食品中兽药最大残留限量》[11]明确规定地美硝唑、甲硝唑允许作治疗用,但不得在动物性食品中检出;同时也规定了动物源性食品以及组织中磺胺类总量最大残留限量(MRLs)为100 μg/kg;甲氧苄氨嘧啶MRLs为50 μg/kg(马肉组织为100 μg/kg)。但不合理滥用和违法使用等现象屡禁不止,抽检中出现不合格样品时有发生。

    食品中磺胺类和硝基咪唑类药物残留的检测方法报道主要有高效液相色谱法(HPLC)、气相色谱-质谱法(GC-MS)、高效液相色谱-串联质谱法(LC-MS/MS)[12-15]和超高效液相色谱-四极杆/静电场轨道阱高分辨质谱(UPLC-Q-Orbitrap HRMS)[16-17]等。LC-MS/MS具有快速、高效、高特异性、高灵敏度等特点,是目前检测磺胺类及硝基咪唑类药物及其代谢物残留常用的分析。样品前处理方法主要有加压液体萃取(Pressurized liquid extraction,PLE)、基质固相分散(MSPD)、固相萃取(Solid phase extraction,SPE)等[18-21],但都存在操作步骤多、检测成本高、耗时长等问题,很难实现快速高效检测需求;而QuEChERS能有效除去食品基质中的绝大部分干扰物,且具有操作简单、快速,环境污染少等特点,因此常与LC-MS/MS相结合分析食品中的兽药。目前,研究报道大多数是针对磺胺类和硝基咪唑类单一种类药物测定,或者其中少部分药物残留的分析,但随着同类兽药和具有抗菌增效作用药物被广泛使用,现有检测方法不能满足检测需求。本文从质谱条件、色谱柱、流动相、提取溶剂、净化方式、复溶液等参数进行优化,以期建立QuEChERS净化结合UPLC-MS/MS同时测定动物源性食品中37种兽药残留批量检测的分析方法。

    16种硝基咪唑混标(详见表1序号2~17,其中羟基甲硝唑为甲硝唑代谢物)、19种磺胺类混标(详见表1序号18~36) 100 μg/mL,A ChmTek. Inc;磺胺二甲异嘧啶、羟甲基甲硝咪唑(羟甲基甲硝咪唑为二甲硝咪唑、洛硝哒唑代谢物) 纯度均≥99.0%,购于Dr Ehrenstorfer公司;乙腈、甲醇 色谱纯,德国Merck公司;甲酸 色谱纯,美国恩科化学(ACS);鸭肉中磺胺甲基嘧啶、磺胺二甲基嘧啶质控样品 中国检验检疫科学院测试评价中心;QuEChERS提取盐包 安捷伦科技有限公司,部件号5982-1010、5982-0101;十八烷基硅烷键合硅胶(C18,50 μm) 博纳艾杰尔科技有限公司;N-丙基乙二胺(PSA,40~60 μm) Agela Technologies;氨基(NH2)吸附剂(40~63 μm) 逗点生物技术有限公司;陶瓷均质子 安捷伦科技有限公司;Waters ACQUITY UPLC BEH C18(1.7 μm,2.1 mm×100 mm) 沃特世科技有限公司;Thermo Accucore C18(2.6 μm,2.1×100 mm) 赛默飞世尔科技有限公司;ACE Ultra Core 2.5 Super C18(2.5 μm,2.1 mm×100 mm) 英国ACE;HYPERSEP Rotain-PEP 固相萃取柱、EMR-Lipid固相萃取柱(3 mL,300 mg) 安捷伦科技有限公司;Waters PRIME HLB 固相萃取柱(6cc,200 mg) 沃特世科技有限公司;罗非鱼、海虾、海蟹、螺、猪肉 海口市某农贸市场。

    表  1  37 种兽药质谱检测参数
    Table  1.  Detection parameters of 37 veterinary drugs
    序号化合物母离子
    (m/z)
    子离子
    (m/z)
    碰撞能(eV)射频透镜电压(eV)序号化合物
    母离子
    (m/z)
    子离子
    (m/z)
    碰撞能
    (eV)
    射频透镜电压
    (eV)
    1羟甲基甲硝咪唑158.1139.9*/55.021.0/12.25520磺胺吡啶250.1155.9*/108.016.1/24.270
    2羟基甲硝唑188.1122.9*/126.013.4/13.55721磺胺甲基嘧啶265.0107.9*/155.925.2/17.072
    3甲硝唑172.1128.0*/82.024.7/14.75722磺胺二甲基嘧啶162.0186.0*/124.017.8/24.943
    4洛硝哒唑201.1140.0*/55.121.7/10.24523磺胺间甲氧嘧啶281.0155.9*/108.017.6/26.074
    5地美硝唑142.196.0*/81.026.2/16.76024磺胺甲噻二唑271.0156.9*/107.914.9/23.163
    6替硝唑248.2121.3*/128.016.3/19.56525磺胺对甲氧嘧啶281.0155.9*/108.017.1/25.374
    7氯甲硝咪唑162.0145.0*/116.317.1/17.05926磺胺氯哒嗪285.0155.9*/108.015.2/24.164
    8苯硝咪唑164.1118.3*/90.836.6/19.17427磺胺甲氧哒嗪281.0155.9*/126.017.2/21.273
    9噻苯哒唑202.1175.0*/131.131.8/26.18928磺胺邻二甲氧嘧啶311.0155.9*/107.918.0/25.881
    10奥硝唑220.1128.1*/82.125.6/10.25829磺胺间二甲氧嘧啶311.0156.0*/107.920.9/28.084
    11阿苯哒唑亚砜282.2240.0*/207.820.7/10.27430磺胺甲基异噁唑254.1155.9*/107.915.8/23.66
    12异丙硝唑170.0124.1*/109.017.1/18.36431磺胺二甲异噁唑268.0155.9*/92.014.0/25.762
    13奥芬达唑316.2159.1*/191.319.3/30.88432苯甲酰磺胺277.0155.9*/107.913.0/22.658
    14甲苯咪唑296.2264.0*/104.932.1/20.87733磺胺喹恶啉301.0155.9*/107.916.6/25.375
    15阿苯达唑266.1234.1*/190.919.3/31.47134磺胺醋酰215.1155.9*/108.010.2/19.469
    16氟苯咪唑314.1282.0*/122.934.1/21.08335甲氧苄氨嘧啶291.1230.0*/261.023.7/25.093
    17芬苯达唑300.1267.8*/158.934.2/16.47536磺胺苯吡唑315.07158.0*/160.029.3/22.186
    18磺胺嘧啶251.1155.9*/108.015.8/23.66637磺胺二甲异嘧啶279.152124.1*/186.022.8/16.575
    19磺胺噻唑256.0155.9*/108.014.9/23.163
    注:*为定量离子。
    下载: 导出CSV 
    | 显示表格

    Thermo TSQ Quantiva三重四极杆质谱仪(配有ESI源)、Ultimate 3000超高效液相色谱仪 美国Thermo Fisher公司;Centrifuge 5804R高速冷冻离心机 Eppendorf公司;Multi Reax多管涡旋混合器 德国Heidolph公司;Mettler XS204型十万分之一分析天平 美国Mettler Toledo公司;SCIENTZ-950E超声波提取器 宁波新芝生物科技公司;Milli-Q超纯水仪 美国Millipore公司;AutoVap S60多样品自动浓缩仪 美国ATR公司;0.22 μm有机相针式滤器 尼龙。

    分别准确称取适量磺胺二甲异嘧啶、羟甲基甲硝咪唑标准品,用甲醇溶解配制成为浓度为100 μg/mL标准使用溶液。

    混合标准使用溶液(1.00 μg/mL):准确吸取浓度均为100 μg/mL 的16种硝基咪唑混标溶液、19种磺胺类混标和100 μg/mL的磺胺二甲异嘧啶、羟甲基甲硝咪唑标准使用溶液各100 μL至10 mL容量瓶中,用甲醇稀释并定容。所有标准使用溶液置于−18 ℃冰箱冷藏保存。

    将样品切成小块后用匀浆机粉碎,准确称取2 g(精确至0.01 g)试样置于50 mL塑料离心管中,加入3粒陶瓷均质子,再加入10 mL 1%甲酸乙腈提取液[22],漩涡10 min,超声(超声波功率800 W)10 min,4 ℃ 10000 r/min离心5 min;净化:取上清液2.0 mL,加入净化盐包(含约100 mg C18、200 mg PSA、100 mg NH2),漩涡10 min,4 ℃ 10000 r/min离心5 min,取上清液1.0 mL置于氮吹仪中,40 ℃氮吹至近干。加入1.0 mL 甲醇-水溶液(50:50, V/V),超声溶解5 min,过0.22 μm有机相滤膜,上机测定。

    取空白样品,按照“1.2.2 项”处理方法制得空白基质溶液,并用其稀释混合标准使用溶液,配成浓度分别为1、5、10、20、50、100、200 ng/mL(分别相当于测试样品中含有5、25、50、100、250、500、1000 μg/mL的目标化合物)系列混合标准工作溶液,现用现配。

    ACQUITY UPLC BEH C18(1.7 μm,2.1 mm×100 mm);柱温35 ℃;进样量3.0 μL;梯度洗脱程序见表2中运行时间为16 min的梯度。

    表  2  7 min和16 min梯度洗脱程序
    Table  2.  Gradient elution program of 7 min and 16 min
    时间(min)流速(mL/min)0.1%甲酸水(%)甲醇(%)时间(min)流速(mL/min)0.1%甲酸水(%)甲醇(%)
    0.000.39550.000.3955
    0.250.39550.250.3955
    4.000.319912.500.3199
    5.000.319913.000.3199
    5.010.395513.010.3955
    7.000.395516.000.3955
    下载: 导出CSV 
    | 显示表格

    离子源:H-ESI源,正离子模式;扫描模式:多反应监测(MRM)模式;喷雾电压3500 kV;汽化温度350 ℃;离子传输管温度350 ℃;鞘气(氮气)流速32 L/min;辅助气(氮气)流速5 L/min;碰撞气:高纯氩气,压力为200 KPa。优化后37种目标化合物的质谱参数见表1

    采用统计软件Excel 2007和Thermo TSQ Quantiva 液相色谱-质谱联用仪配备的定量分析软件对检测结果进行数据处理分析。

    质谱条件中的碰撞能量和RF Lens电压对离子丰度具有较大影响,对方法灵敏度有决定性作用。碰撞能量过高时,由母离子生成的碎片过多,子离子响应过低;碰撞能量过低时,不能生成所需的子离子[23]。RF Lens电压的优化有利于得到更稳定的化合物响应。本实验通过针泵以流动注射的方式对“1.2.1配制”中浓度均为(1.0 μg/mL)的混合标准液进行优化,接入三通接头并通入分析时使用的初始流动相,使优化条件同分析条件一致,仪器默认碰撞能范围为5~55 V的条件下进行母离子全扫描,为每个待测药物选取响应最高的两对离子对及相应的最佳RF Lens电压和碰撞能量,并确定其定量与定性离子对(具体优化后参数见表1)。

    色谱分离优化考虑的主要因素有共流出物分离情况和采集时间。本文对比了Waters ACQUITY UPLC BEH C18、Thermo Accucore C18和ACE Ultra Core 2.5 Super C18三种色谱柱分离效果,发现Waters柱分析大部分目标物响应强度均比Thermo和ACE柱高。同时考察Waters柱洗脱梯度程序对37种目标物分离的影响,比较了运行7和16 min时各色谱峰的分离效果(洗脱程序见表2),由图1可以看出运行7 min时总离子图多数峰形较宽,大部分目标物都集中重叠在5~6.5 min时出峰;而运行时间调至16 min时目标化合物峰形变尖锐,出峰分布更均匀,分离效果较好;且Waters柱对分离磺胺邻二甲氧嘧啶、磺胺间二甲氧嘧啶;磺胺间甲氧嘧啶、磺胺对甲氧嘧啶、磺胺甲氧哒嗪;磺胺二甲嘧啶、磺胺二甲异嘧啶三组异构体效果较好,均能达到基线分离(见图2)。综合分离及响应效果、峰形、色谱柱保留时间等[22,24]因素,最终选用Waters柱进行实验分析。

    图  1  37种兽药运行7 min和16 min时总离子流色谱图(Waters BEH 柱)
    Figure  1.  37 veterinary drugs at 7min and 16min of total ion chromatograms (Waters BEH column)
    图  2  三组磺胺类异构体质量色谱图
    注:1.磺胺邻二甲氧嘧啶;2.磺胺间二甲氧嘧啶;3.磺胺间甲氧嘧啶;4.磺胺对甲氧嘧啶;5.磺胺甲氧哒嗪;6.磺胺二甲嘧啶;7.磺胺二甲异嘧啶。
    Figure  2.  Mass chromatogram of three groups sulfonamides isomers

    本研究对比了水-甲醇、0.1%甲酸水-甲醇、5 mmol/L乙酸铵水溶液(含0.1%甲酸)-甲醇、0.1%甲酸水-乙腈和5 mmol/L乙酸铵水溶液(含0.1%甲酸)-乙腈5种不同流动相体系对37种兽药的分离及响应效果。结果表明:由于乙腈洗脱能力较强,目标化合物整体出峰时间提前,存在色谱峰重叠现象,而且不能完全将磺胺类中磺胺间甲氧嘧啶、磺胺对甲氧嘧啶、磺胺甲氧哒嗪三种异构体色谱峰分开。在流动相中加入5 mmol/L乙酸铵溶液时可以适当的改善峰形,但同时大多数硝基咪唑及其代谢物的响应效果均下降,尤其是对羟甲基甲硝咪唑、羟基甲硝唑和氯甲硝咪唑三种物质影响最大。磺胺类在酸性溶液中以分子状态存在,从而很好地与固定相作用而被保留和分离,因此需在流动相中加入一定量的甲酸[25]

    综合考虑,采用0.1%甲酸水-甲醇作为流动相时对大部分磺胺类和硝基咪唑类药物及其代谢物的分离效果均较好,色谱峰型、信号响应、稳定性最优。张鸿伟[16]、励炯[26]等分别在分析磺胺类和硝基咪唑类药物残留的方法时,均发现流动相采用0.1%甲酸水-甲醇时各目标物分离度和质谱响应效果最佳。因此本文选择是0.1%甲酸水-甲醇作为体系的流动相。

    以空白基质加标回收率为指标,添加100 μg/kg加标量考察各目标物回收率。本研究分别以1%甲酸-乙腈、2%甲酸-乙腈、5%甲酸-乙腈、80%乙腈-水(含1%甲酸)、1%甲酸-甲醇、2%甲酸-甲醇6种有机溶剂作为提取液。由图3可知,采用5%甲酸-乙腈、80%乙腈-水(含1%甲酸)、1%甲酸-甲醇、2%甲酸-甲醇做提取溶剂时,羟基甲硝唑和羟甲基甲硝咪唑的提取率均小于40%,可能是两种物质结构上的羟基官能团导致在酸度过高和甲醇提取体系中不易被提取出来;2%甲酸-乙腈提取时阿苯哒唑亚砜、磺胺苯甲酰、磺胺苯吡唑、磺胺间二甲氧嘧啶、磺胺喹噁啉5种回收率均小于40%;选用1%甲酸-乙腈提取时37种兽药的回收率均在70%~100%之间。与文献[27-29]中结果相同,综合考虑,本文选择1%甲酸-乙腈作为提取液。

    图  3  不同提取溶剂对37种兽药回收率的影响
    Figure  3.  Effects of different extraction solvents of adsorbent on recoveries of 37 veterinary drugs

    以空白基质加标回收率为指标,添加100 μg/kg加标量考察各目标物回收率。基于文献[16-17,26,30-32]报道,本文比较了C18+PAS混合吸附剂、C18+PSA+NH2混合吸附剂、HYPERSEP Rotain-PEP固相萃取柱、安捷伦QuEChERS提取盐包、EMR-Lipid固相萃取柱、Waters PRIME HLB 固相萃取柱6种方式的净化效果。由图4可知,HYPERSEP Rotain-PEP柱、安捷伦QuEChERS提取盐包、EMR-Lipid柱、Waters PRIME HLB柱进行净化时,大部分磺胺类回收率均小于60%,而甲氧苄氨嘧啶和硝基咪唑及其代谢物回收率均大于70%,可能是甲氧苄啶磺胺结构中苯环上的三个甲氧基的影响,使其化学性质与其他磺胺类产生较大的差异。采用C18+PSA(100 mg+100 mg)和C18+PSA+NH2(100 mg+100 mg+150 mg)进行净化时所得回收率均在60%~95%之间;通过进一步研究三种吸附剂的配比和用量:C18吸附剂含量(100、200 mg),PSA吸剂含量(100、200 mg),NH2吸附剂含量(50、100 mg)时,从图5中可见当C18+PAS+NH2三种吸附剂配比为100 mg+200 mg+100 mg时,37种目标物回收率总体较好。因此,本试验采用C18+PSA+NH2(100 mg+200 mg+100mg)的填料进行样品净化。

    图  4  不同净化方式对37种兽药回收率的影响
    Figure  4.  Effects of different purification methods of adsorbent on recoveries of 37 veterinary drugs
    图  5  不同吸附剂加入量净化对37种兽药回收率的影响
    Figure  5.  Effects of different mass of adsorbent on recoveries of 37 veterinary drugs

    以空白基质加标回收率为指标,添加100 μg/kg加标量考察各目标物回收率。按1.2项下进行样品前处理,取1 mL净化后的提取液,置于氮气仪45 ℃吹至近干后复溶,对比不同比例的甲醇/水和乙腈/水作为复溶液对目标物回收率的影响。使用不同比例的乙腈/水作为复溶液时大部分硝基咪唑及其代谢物的峰型较差,其中羟甲基硝咪唑、羟基甲硝唑还出现峰分叉现象;由图6可知,随着乙腈比比例的增大,大部分目标物回收率呈下降趋势,其中甲硝唑、甲氧苄氨嘧啶、羟甲基甲硝咪唑下降最为明显。采用不同比例甲醇/水复溶时,随着甲醇比例的增加,甲苯硝唑、奥苯哒唑、氟苯咪唑、芬苯达唑4种硝基咪唑类回收率提高至80%~90%;当甲醇比例达80%时,磺胺醋酰、羟基甲硝唑、地美硝唑、磺胺嘧啶回收率下降显著。10%甲醇/水作为复溶液小部分硝唑咪唑及其代谢物的峰型不好,且较使用50%甲醇/水时回收率低,可能是增加甲醇的比率有利于硝基咪唑类的溶出率,但当甲醇比率太大会引起溶剂效应。综合考虑,本试验采用50%甲醇/水溶液为复溶液。

    图  6  不同复溶液对37种兽药回收率的影响
    Figure  6.  Effects of different dissolved solution on recoveries of 37 veterinary drugs

    采用优化好的UPLC-MS/MS参数进行方法学研究,基质匹配标准曲线法定量。移取适量的混合标准溶液,用空白样品提取液分别配制成不同质量浓度的基质标准溶液,具体见1.2.3项;以各组分浓度与其色谱峰面积进行线性回归,结果37种目标化合物均呈现良好的线性关系,线性范围为1.0~200 μg/L,相关系数r≥0.9980。在空白罗非鱼基质样品中进行低浓度加标试验,直到目标化合物浓度添加量至信噪比为3和10获得方法检出限(LOD)为0.01~0.16 μg/kg,定量限(LOQ)0.01~0.54 μg/kg,具体数值列于表3。与现行相关标准比较[33-35],本方法中硝基咪唑类及其代谢物和磺胺类的检出限均分别低于《SN/T 2624-2010 动物源性食品中多种碱性药物残留量的检测方法液相色谱-质谱/质谱法》、《SN/T 1626-2019 出口肉及肉制品中甲硝唑、替硝唑、奥硝唑、洛硝哒唑、二甲硝咪唑、赛克硝唑残留量测定方法液相色谱-质谱/质谱法》方法中的测定低限和《农业部1025号公告-23-2008 动物源食品中磺胺类药物残留检测液相色谱-串联质谱法》方法中的检测低限,说明本检测方法灵敏度较高。

    表  3  37种兽药的线性关系、相关系数和定量限
    Table  3.  Linear equations, correlation coefficents (r) and quantitative limit of 37 veterinary drugs
    化合物
    线性关系

    相关系数r检出限
    (μg/kg)
    定量限
    (μg/kg)
    加标浓度
    (μg/kg)
    平均回收率
    (%, n=6)
    相对标准偏(%, n=6)精密度
    (%, n=6)
    羟基甲硝唑Y=7.799×104X−7.492×1030.99970.150.515,50,10083.5,91.6,91.44.9,3.7,4.21.3
    羟甲基甲
    硝咪唑
    Y=1.555×105X+9.669×1030.99960.060.205,50,10076.8,86.2,90.75.3,3.4,3.91.5
    甲硝唑Y=3.036×105X+1.732×1040.99950.050.175,50,10085.1,92.5,97.75.1,4.1,3.52.0
    洛硝哒唑Y=9.289×104X+2.436×1040.99810.130.425,50,10086.3,94.6,95.25.6,4.9,4.41.7
    地美硝唑Y=3.513×105X+1.505×1040.99960.130.425,50,10081.0,90.9,94.13.4,5.2,2.71.0
    替硝唑Y=7.264×104X+3.77×1040.99790.060.205,50,10085.5,96.9,97.73.9,3.0,2.31.0
    氯甲硝咪唑Y=7.648×104X+2.329×1040.99970.160.545,50,10084.0,94.2,96.32.7,3.0,3.41.9
    苯硝咪唑Y=4.466×105X+9.476×1040.99970.040.125,50,10082.2,93.2,93.73.2,2.2,3.61.3
    噻苯哒唑Y=1.013×106X+4.205×1050.99880.010.035,50,10089.1,91.5,94.23.1,3.4,3.12.3
    奥硝唑Y=2.073×105X−7.84×1030.99970.030.105,50,10089.0,92.9,80.84.9,3.4,4.61.8
    阿苯哒唑亚砜Y=2.166×105X−2.585×1050.99960.020.055,50,10089.4,90.0,86.03.6,3.5,5.71.8
    异丙硝唑Y=5.729×105X+7.096×1040.99970.050.155,50,10073.3,91.5,74.84.5,2.1,5.11.8
    奥芬达唑Y=5.107×105X−2.413×1040.99960.010.025,50,10082.2,85.0,86.54.2,5.1,4.72.1
    甲苯咪唑Y=1.449×106X−1.522×1040.99970.010.025,50,10081.7,86.4,87.04.8,3.3,2.80.4
    阿苯达唑Y=1.729×106X+5.852×1050.99950.010.025,50,10079.8,86.4,89.34.4,5.3,4.21.1
    氟苯咪唑Y=1.317×106X−4.537×1030.99980.020.075,50,10084.9,85.7,89.34.2,5.5,5.31.7
    芬苯达唑Y=1.534×106X+6.724×1040.99980.020.045,50,10070.1,,77.1,75.52.8,5.5,2.41.3
    磺胺嘧啶Y=1.728×105X+4134×1040.99910.030.075,50,10086.2,95.4,92.94.9,0.9,4.71.0
    磺胺噻唑Y=2.268×105X+5.845×1040.99920.030.105,50,10075.3,88.8,74.63.9,3.5,3.62.3
    磺胺吡啶Y=2.069×105X+8.172×1040.99930.040.115,50,10086.7,89.1,77.35.4,3.3,4.80.5
    磺胺甲基嘧啶Y=1.479×105X+9.528×1040.99820.010.045,50,10077.3,88.7,90.95.2,4.1,4.12.3
    磺胺二甲基嘧啶Y=3.441×105X+2.02×1050.99890.010.045,50,10076.7,84.2,89.55.6,4.3,3.92.2
    磺胺间甲氧嘧啶Y=1.3×105X+9.11×1030.99930.030.095,50,10076.3,84.7,86.15.4,2.6,3.61.1
    磺胺甲噻二唑Y=1.533×105X+6.044×1040.99920.020.065,50,10083.7,90.7,94.84.8,2.6,4.12.2
    磺胺对甲氧嘧啶Y=1.106×105X+8.038×1040.99840.030.075,50,10081.4,92.1,90.24.3,2.0,5.21.5
    磺胺氯哒嗪Y=1.385×105X+8.024×1030.99970.020.065,50,10087.0,88.5,92.33.3,3.3,3.81.7
    磺胺甲氧哒嗪Y=2.285×105X+7.766×1040.99930.020.065,50,10078.5,86.3,87.04.1,2.8,5.21.9
    磺胺邻二甲氧嘧啶Y=4.072×105X+1.872×1050.99930.010.025,50,10072.6,88.8,87.83.9,2.4,5.42.0
    磺胺间二甲氧嘧啶Y=1.106×105X+8.038×1040.99840.010.025,50,10072.5,85.1,88.13.3,3.7,3.61.3
    磺胺甲基异噁唑Y=1.177×105X+1.903×1040.99980.030.085,50,10085.9,94.2,96.33.5,3.7,5.71.5
    磺胺二甲异噁唑Y=1.717×105X+1.58×1040.99980.030.085,50,10080.5,89.0,78.13.9,3.7,5.62.1
    苯甲酰磺胺Y=1.569×105X+4.352×1040.99940.020.065,50,10081.9,91.7,96.53.1,5.4,3.71.8
    磺胺喹恶啉Y=1.595×105X+4.792×1030.99950.020.065,50,10074.7,83.6,85.45.0,5.2,5.31.4
    磺胺醋酰Y=3.276×105X+6.718×1040.99880.040.125,50,10074.5,81.3,75.83.6,4.6,3.00.9
    甲氧苄氨嘧啶Y=4.04×105X+1.786×1050.99900.010.025,50,10073.7,94.3,95.62.5,3.4,2.92.1
    磺胺苯吡唑Y=1.979×105X−9.751×1040.99930.010.035,50,10076.4,92.5,92.74.0,2.2,3.11.0
    磺胺二甲异嘧啶Y=6.972×105X+3.526×1050.99900.010.035,50,10083.5,91.4,86.52.2,4.6,3.51.1
    下载: 导出CSV 
    | 显示表格

    将“1.2.1配制”的混合标准使用液添加到空白罗非鱼样品进行5、50、100 μg/kg三个水平的添加回收实验,每个水平取6个平行样,在优化条件下进行处理后测定,平均回收率为70.1%~97.7%,方法的相对标准偏差RSD为0.9%~5.6%,说明本方法回收率及重复性较好。对质量浓度为20.0 ng/mL的37种目标物标准溶液进行重复测定6次,RSD(n=6)为0.4%~2.3%,说明仪器具有良好的精密度。

    为考察方法准确性和科学性,运用该方法对中国检验检疫科学院测试评价中心的质控样品进行测定,检测结果均在特性值区间范围内(见表4)。通过本文建立的方法对海口市某农贸市场购买的152批动物源性食品样品中37种兽药残留量的进行测定,每个样品平行测定2次,发现罗非鱼1号样磺胺类总量和甲氧苄氨嘧啶两个项目均不合格,罗非鱼2号样磺胺类总量不合格,硝基咪唑及其代谢物类药物均未检出(见表5)。

    表  4  质控样品检测结果
    Table  4.  Results of quality control sample
    货号项目特性值(μg/kg)特性值区间(μg/kg)实测值(μg/kg)
    QC-RD-702
    磺胺甲基嘧啶162.5126.5~198.5180.7±2.7
    磺胺二甲基嘧啶98.7779.09~118.598.3±1.3
    注:实测值:平均值±相对误差。
    下载: 导出CSV 
    | 显示表格
    表  5  样品中硝基咪唑类及其代谢物和磺胺类的检出结果
    Table  5.  The results of nitroimidazoles and their metabolites, sulfonamides in the samples
    样品名称检出的磺胺类实测值(μg/kg)最大限量值[11](μg/kg)
    罗非鱼1磺胺嘧啶246.3±2.7100
    罗非鱼1甲氧苄氨嘧啶132.6±1.350
    罗非鱼2磺胺嘧啶232.8±1.2100
    罗非鱼2甲氧苄氨嘧啶2.4±5.650
    罗非鱼3磺胺嘧啶67.5±1.7100
    罗非鱼 3甲氧苄氨嘧啶2.4±3.750
    注:实测值:平均值±相对误差;其他样品均未检出。
    下载: 导出CSV 
    | 显示表格

    本文通过对质谱条件、色谱柱、流动相、提取溶剂、净化方式、复溶液等参数进行了优化,采用基质匹配标准曲线外标法定量,结合UPLC-MS/MS方法检测,建立了UPLC-MS/MS测定动物源性食品中37种兽药残留的测定方法。运用该方法对质控样中磺胺甲基嘧啶、磺胺二甲基嘧啶进行分析,结果都在特征范围值区间之内;并通过检测海口市某农贸市场购买的152批动物源性食品样品,发现两批问题样品。该方法前处理简单,具有较好的准确度、灵敏度和精密度;与现行标准相比,缩短了前处理和分析的时间,同时降低方法检出限和定量限,为大批量动物源性食品中硝基咪唑类药物及其代谢物和磺胺类兽药残留的快速筛查和定量分析检测提供了可靠的技术支持。

  • 图  1   37种兽药运行7 min和16 min时总离子流色谱图(Waters BEH 柱)

    Figure  1.   37 veterinary drugs at 7min and 16min of total ion chromatograms (Waters BEH column)

    图  2   三组磺胺类异构体质量色谱图

    注:1.磺胺邻二甲氧嘧啶;2.磺胺间二甲氧嘧啶;3.磺胺间甲氧嘧啶;4.磺胺对甲氧嘧啶;5.磺胺甲氧哒嗪;6.磺胺二甲嘧啶;7.磺胺二甲异嘧啶。

    Figure  2.   Mass chromatogram of three groups sulfonamides isomers

    图  3   不同提取溶剂对37种兽药回收率的影响

    Figure  3.   Effects of different extraction solvents of adsorbent on recoveries of 37 veterinary drugs

    图  4   不同净化方式对37种兽药回收率的影响

    Figure  4.   Effects of different purification methods of adsorbent on recoveries of 37 veterinary drugs

    图  5   不同吸附剂加入量净化对37种兽药回收率的影响

    Figure  5.   Effects of different mass of adsorbent on recoveries of 37 veterinary drugs

    图  6   不同复溶液对37种兽药回收率的影响

    Figure  6.   Effects of different dissolved solution on recoveries of 37 veterinary drugs

    表  1   37 种兽药质谱检测参数

    Table  1   Detection parameters of 37 veterinary drugs

    序号化合物母离子
    (m/z)
    子离子
    (m/z)
    碰撞能(eV)射频透镜电压(eV)序号化合物
    母离子
    (m/z)
    子离子
    (m/z)
    碰撞能
    (eV)
    射频透镜电压
    (eV)
    1羟甲基甲硝咪唑158.1139.9*/55.021.0/12.25520磺胺吡啶250.1155.9*/108.016.1/24.270
    2羟基甲硝唑188.1122.9*/126.013.4/13.55721磺胺甲基嘧啶265.0107.9*/155.925.2/17.072
    3甲硝唑172.1128.0*/82.024.7/14.75722磺胺二甲基嘧啶162.0186.0*/124.017.8/24.943
    4洛硝哒唑201.1140.0*/55.121.7/10.24523磺胺间甲氧嘧啶281.0155.9*/108.017.6/26.074
    5地美硝唑142.196.0*/81.026.2/16.76024磺胺甲噻二唑271.0156.9*/107.914.9/23.163
    6替硝唑248.2121.3*/128.016.3/19.56525磺胺对甲氧嘧啶281.0155.9*/108.017.1/25.374
    7氯甲硝咪唑162.0145.0*/116.317.1/17.05926磺胺氯哒嗪285.0155.9*/108.015.2/24.164
    8苯硝咪唑164.1118.3*/90.836.6/19.17427磺胺甲氧哒嗪281.0155.9*/126.017.2/21.273
    9噻苯哒唑202.1175.0*/131.131.8/26.18928磺胺邻二甲氧嘧啶311.0155.9*/107.918.0/25.881
    10奥硝唑220.1128.1*/82.125.6/10.25829磺胺间二甲氧嘧啶311.0156.0*/107.920.9/28.084
    11阿苯哒唑亚砜282.2240.0*/207.820.7/10.27430磺胺甲基异噁唑254.1155.9*/107.915.8/23.66
    12异丙硝唑170.0124.1*/109.017.1/18.36431磺胺二甲异噁唑268.0155.9*/92.014.0/25.762
    13奥芬达唑316.2159.1*/191.319.3/30.88432苯甲酰磺胺277.0155.9*/107.913.0/22.658
    14甲苯咪唑296.2264.0*/104.932.1/20.87733磺胺喹恶啉301.0155.9*/107.916.6/25.375
    15阿苯达唑266.1234.1*/190.919.3/31.47134磺胺醋酰215.1155.9*/108.010.2/19.469
    16氟苯咪唑314.1282.0*/122.934.1/21.08335甲氧苄氨嘧啶291.1230.0*/261.023.7/25.093
    17芬苯达唑300.1267.8*/158.934.2/16.47536磺胺苯吡唑315.07158.0*/160.029.3/22.186
    18磺胺嘧啶251.1155.9*/108.015.8/23.66637磺胺二甲异嘧啶279.152124.1*/186.022.8/16.575
    19磺胺噻唑256.0155.9*/108.014.9/23.163
    注:*为定量离子。
    下载: 导出CSV

    表  2   7 min和16 min梯度洗脱程序

    Table  2   Gradient elution program of 7 min and 16 min

    时间(min)流速(mL/min)0.1%甲酸水(%)甲醇(%)时间(min)流速(mL/min)0.1%甲酸水(%)甲醇(%)
    0.000.39550.000.3955
    0.250.39550.250.3955
    4.000.319912.500.3199
    5.000.319913.000.3199
    5.010.395513.010.3955
    7.000.395516.000.3955
    下载: 导出CSV

    表  3   37种兽药的线性关系、相关系数和定量限

    Table  3   Linear equations, correlation coefficents (r) and quantitative limit of 37 veterinary drugs

    化合物
    线性关系

    相关系数r检出限
    (μg/kg)
    定量限
    (μg/kg)
    加标浓度
    (μg/kg)
    平均回收率
    (%, n=6)
    相对标准偏(%, n=6)精密度
    (%, n=6)
    羟基甲硝唑Y=7.799×104X−7.492×1030.99970.150.515,50,10083.5,91.6,91.44.9,3.7,4.21.3
    羟甲基甲
    硝咪唑
    Y=1.555×105X+9.669×1030.99960.060.205,50,10076.8,86.2,90.75.3,3.4,3.91.5
    甲硝唑Y=3.036×105X+1.732×1040.99950.050.175,50,10085.1,92.5,97.75.1,4.1,3.52.0
    洛硝哒唑Y=9.289×104X+2.436×1040.99810.130.425,50,10086.3,94.6,95.25.6,4.9,4.41.7
    地美硝唑Y=3.513×105X+1.505×1040.99960.130.425,50,10081.0,90.9,94.13.4,5.2,2.71.0
    替硝唑Y=7.264×104X+3.77×1040.99790.060.205,50,10085.5,96.9,97.73.9,3.0,2.31.0
    氯甲硝咪唑Y=7.648×104X+2.329×1040.99970.160.545,50,10084.0,94.2,96.32.7,3.0,3.41.9
    苯硝咪唑Y=4.466×105X+9.476×1040.99970.040.125,50,10082.2,93.2,93.73.2,2.2,3.61.3
    噻苯哒唑Y=1.013×106X+4.205×1050.99880.010.035,50,10089.1,91.5,94.23.1,3.4,3.12.3
    奥硝唑Y=2.073×105X−7.84×1030.99970.030.105,50,10089.0,92.9,80.84.9,3.4,4.61.8
    阿苯哒唑亚砜Y=2.166×105X−2.585×1050.99960.020.055,50,10089.4,90.0,86.03.6,3.5,5.71.8
    异丙硝唑Y=5.729×105X+7.096×1040.99970.050.155,50,10073.3,91.5,74.84.5,2.1,5.11.8
    奥芬达唑Y=5.107×105X−2.413×1040.99960.010.025,50,10082.2,85.0,86.54.2,5.1,4.72.1
    甲苯咪唑Y=1.449×106X−1.522×1040.99970.010.025,50,10081.7,86.4,87.04.8,3.3,2.80.4
    阿苯达唑Y=1.729×106X+5.852×1050.99950.010.025,50,10079.8,86.4,89.34.4,5.3,4.21.1
    氟苯咪唑Y=1.317×106X−4.537×1030.99980.020.075,50,10084.9,85.7,89.34.2,5.5,5.31.7
    芬苯达唑Y=1.534×106X+6.724×1040.99980.020.045,50,10070.1,,77.1,75.52.8,5.5,2.41.3
    磺胺嘧啶Y=1.728×105X+4134×1040.99910.030.075,50,10086.2,95.4,92.94.9,0.9,4.71.0
    磺胺噻唑Y=2.268×105X+5.845×1040.99920.030.105,50,10075.3,88.8,74.63.9,3.5,3.62.3
    磺胺吡啶Y=2.069×105X+8.172×1040.99930.040.115,50,10086.7,89.1,77.35.4,3.3,4.80.5
    磺胺甲基嘧啶Y=1.479×105X+9.528×1040.99820.010.045,50,10077.3,88.7,90.95.2,4.1,4.12.3
    磺胺二甲基嘧啶Y=3.441×105X+2.02×1050.99890.010.045,50,10076.7,84.2,89.55.6,4.3,3.92.2
    磺胺间甲氧嘧啶Y=1.3×105X+9.11×1030.99930.030.095,50,10076.3,84.7,86.15.4,2.6,3.61.1
    磺胺甲噻二唑Y=1.533×105X+6.044×1040.99920.020.065,50,10083.7,90.7,94.84.8,2.6,4.12.2
    磺胺对甲氧嘧啶Y=1.106×105X+8.038×1040.99840.030.075,50,10081.4,92.1,90.24.3,2.0,5.21.5
    磺胺氯哒嗪Y=1.385×105X+8.024×1030.99970.020.065,50,10087.0,88.5,92.33.3,3.3,3.81.7
    磺胺甲氧哒嗪Y=2.285×105X+7.766×1040.99930.020.065,50,10078.5,86.3,87.04.1,2.8,5.21.9
    磺胺邻二甲氧嘧啶Y=4.072×105X+1.872×1050.99930.010.025,50,10072.6,88.8,87.83.9,2.4,5.42.0
    磺胺间二甲氧嘧啶Y=1.106×105X+8.038×1040.99840.010.025,50,10072.5,85.1,88.13.3,3.7,3.61.3
    磺胺甲基异噁唑Y=1.177×105X+1.903×1040.99980.030.085,50,10085.9,94.2,96.33.5,3.7,5.71.5
    磺胺二甲异噁唑Y=1.717×105X+1.58×1040.99980.030.085,50,10080.5,89.0,78.13.9,3.7,5.62.1
    苯甲酰磺胺Y=1.569×105X+4.352×1040.99940.020.065,50,10081.9,91.7,96.53.1,5.4,3.71.8
    磺胺喹恶啉Y=1.595×105X+4.792×1030.99950.020.065,50,10074.7,83.6,85.45.0,5.2,5.31.4
    磺胺醋酰Y=3.276×105X+6.718×1040.99880.040.125,50,10074.5,81.3,75.83.6,4.6,3.00.9
    甲氧苄氨嘧啶Y=4.04×105X+1.786×1050.99900.010.025,50,10073.7,94.3,95.62.5,3.4,2.92.1
    磺胺苯吡唑Y=1.979×105X−9.751×1040.99930.010.035,50,10076.4,92.5,92.74.0,2.2,3.11.0
    磺胺二甲异嘧啶Y=6.972×105X+3.526×1050.99900.010.035,50,10083.5,91.4,86.52.2,4.6,3.51.1
    下载: 导出CSV

    表  4   质控样品检测结果

    Table  4   Results of quality control sample

    货号项目特性值(μg/kg)特性值区间(μg/kg)实测值(μg/kg)
    QC-RD-702
    磺胺甲基嘧啶162.5126.5~198.5180.7±2.7
    磺胺二甲基嘧啶98.7779.09~118.598.3±1.3
    注:实测值:平均值±相对误差。
    下载: 导出CSV

    表  5   样品中硝基咪唑类及其代谢物和磺胺类的检出结果

    Table  5   The results of nitroimidazoles and their metabolites, sulfonamides in the samples

    样品名称检出的磺胺类实测值(μg/kg)最大限量值[11](μg/kg)
    罗非鱼1磺胺嘧啶246.3±2.7100
    罗非鱼1甲氧苄氨嘧啶132.6±1.350
    罗非鱼2磺胺嘧啶232.8±1.2100
    罗非鱼2甲氧苄氨嘧啶2.4±5.650
    罗非鱼3磺胺嘧啶67.5±1.7100
    罗非鱼 3甲氧苄氨嘧啶2.4±3.750
    注:实测值:平均值±相对误差;其他样品均未检出。
    下载: 导出CSV
  • [1] 陈振桂, 占春瑞, 郭平, 等. 高效液相色谱法同时测定水产品中13种磺胺类药物残留的研究[J]. 食品科学,2007(28):448−451. [Chen Z H, Zhan C R, Guo P, et al. Study on simultaneous determination of 13 sulfonamides residues in aquatic products by HPLC[J]. Food Science,2007(28):448−451. doi: 10.3321/j.issn:1002-6630.2007.10.111
    [2]

    Wulf N R, Matuszewski K A. Sulfonamide cross-reactivity: Is there evidence to support broad cross-allergenicity?[J]. American Journal of Health System Pharmacy,2013,70:1483−1494. doi: 10.2146/ajhp120291

    [3]

    Ilardi E A, Vitaku E, Njardarson J T. Data-mining for sulfur and fluorine: An evaluation of pharmaceuticals to reveal opportunities for drug design and discovery[J]. Journal of Medicinal Chemistry,2014,57:2832−2842. doi: 10.1021/jm401375q

    [4] 殷居易, 谢东华, 刘永明, 等. 蜂产品中9种硝基咪唑类药物原药及代谢物残留量的HPLC-APCI(+)MS/MS分析[J]. 分析测试学报,2009,28(8):935−939. [Yin J Y, Xie D H, Liu Y M, et al. Determination of nitroimidazole drug residues in bee products by liquid chromatography-atmospheric pressre chemical ionization-tandem quadrupole mass spectrometry[J]. Journal of Instrumental Analysis,2009,28(8):935−939. doi: 10.3969/j.issn.1004-4957.2009.08.013
    [5]

    Kantiani L, Llorca M, Sanch S J, et al. Emerging food contaminants: A review[J]. Analytical & Bioanalytical Chemistry,2010,398(6):2413−2427.

    [6]

    Pessel D, Jagadeshwar-Reddy T, Verdon E. Develop-ment of a new screening method for the detection of antibiotic residues in muscle tissues using liquid chromatography and high resolution mass spectrometry with a LC-LTQ-Orbitrap instrument[J]. Food Additives & Contaminants,2011(10):1340−1351.

    [7] 晏利芝, 赵永彪, 富玉, 等. 超高效液相色谱-串联质谱法同时测定猪肉中β-受体激动剂、喹诺酮类和磺胺类兽药残留量[J]. 分析试验室,2011,30(1):84−86. [Yan L Z, Zhao Y B, F Y, et al. Simultaneous determination of β-agonist, quinolones and sulfonamides residues in pork by ultra performance liquid chromatography-electrosp ray ionization tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory,2011,30(1):84−86. doi: 10.3969/j.issn.1000-0720.2011.01.024
    [8] 王浩, 赵丽, 杨红梅, 等. 液相色谱-串联质谱法测定牛奶中35种四环素类、磺胺类、青霉素类、大环内酯类、氯霉素类抗生素残留[J]. 色谱,2015,33(9):995−1001. [Wang H, Zhao L, Yang H M, et al. Determination of 35 antibiotic residues of tetracyclines, sulfonamides, penicillins, macrolides and amphenicols in milk by liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography,2015,33(9):995−1001. doi: 10.3724/SP.J.1123.2015.04046
    [9]

    Aguilera-Luiz M M, Vidal J L M, Romero-Gonz Lez R, et al. Multiclass method for fast determination of veterinary drug residues in baby food b ultra-high-performance liquid chromatography-tandem mass spectrometry[J]. Food Chemistry,2012,132(4):2171−2180. doi: 10.1016/j.foodchem.2011.12.042

    [10] 祖恩慧, 张岚, 于龙飞. 3种硝基咪唑类药物治疗滴虫性阴道炎的有效性及不良反应研究[J]. 中国妇幼保健,2015,30(12):1936−1938. [Zu E H, Zhang L, Yu L F. Study on the effectiveness and adverse reactions of three nitroimidazoles in treatment of trichomonas vaginitis[J]. Maternal and Child Health Care of China,2015,30(12):1936−1938.
    [11] 农业农村部, 国家卫生健康委员会, 国家市场监督管理总局. GB 31650-2019中国食品安全标准食品中兽药最大残留限量[S]. 北京: 中国标准出版社, 2019.

    Ministry of Agriculture and Rural Affairs Announcement, National Health Commission, State Administration for Market Regulation. GB 31650-2019 Naional food safety standard. Maximum residue limits for veterinary drugs in foods[S]. Beijing: National Standards Press, 2019.

    [12]

    Won S Y, Chang H L, Chang H S, et al. Monitoring of 14 sulfonamide antibiotic residues in marine products using HPLC-PDA and LC-MS/MS[J]Food Control, 2011, 22: 1101-1107.

    [13]

    Meng Z, Shi Z, Liang S, et al. Residues investigation of fluoroquinolones and sulphonamides and their metabolites in bovine milk by quantification and confirmation using ultra-performance liquid chromatography-tandem mass spectrometry[J]. Food Chemistry,2015,174:597−605. doi: 10.1016/j.foodchem.2014.11.067

    [14] 刁志祥, 王旭堂, 张培杨, 等. 动物源性食品中磺胺类药物和β-受体激动剂残留的色谱和质谱检测技术研究进展[J]. 中国畜牧杂志,2020,56(5):12−19. [Diao Z X, Wang X T, Zhang P Y, et al. Research progress on chromatographic and mass spectrometric detection techniques for sulfonamides and beta-agonist residues in animal-derived foods[J]. Chinese Journal of Animal Science,2020,56(5):12−19.
    [15] 汪纪仓, 马素英, 王大菊, 等. 气相色谱-离子阱串联质谱法同时测定猪肌肉中硝基咪唑类药物残留[J]. 畜牧兽医学报,2008,39(12):1772−1778. [Wang J C, Ma S Y, Wang D J, et al. Simultaneous determination of nitroimidazole residues in swine meat by gas chromatography-ion trap tandem mass spectrometry[J]. Acta Veterinaria et Zootechnica Sinica,2008,39(12):1772−1778. doi: 10.3321/j.issn:0366-6964.2008.12.023
    [16] 张鸿伟, 简慧敏, 林黎明, 等. 液相色谱-四极杆/离子阱质谱快速测定蜂蜜中痕量硝基咪唑类药物及其代谢物残留[J]. 分析测试学报,2012,31(7):763−770. [Zhang H W, Jian H M, Lin L M, et al. Rapid detection of trace amounts of nitroimidazoles and their metabolites in honey using liquid chroma tography coupled with quadrupole /linear ion trap mass spectrometry[J]. Journal of Instrumental Analysis,2012,31(7):763−770. doi: 10.3969/j.issn.1004-4957.2012.07.002
    [17] 潘娟, 严凤, 张婧, 等. 超高效液相色谱-静电轨道阱质谱同时筛查测定猪肉中21种磺胺类药物残留[J]. 上海畜牧兽医通讯,2019(4):8−13. [Pan J, Yan F, Zhang Q, et al. Simultaneous screening and determination of 21 sulfonamides residues in pork by ultra performance liquid chromatography-electrostatic orbital trap mass spectrometry[J]. Shanghai Journal of Animal Husbandry and Veterinary Medicin,2019(4):8−13.
    [18]

    Sun H, Qi H, Li H. Development of capillary electrophoretic method combined with accelerated solvent extraction for simultaneous determination of residual sulfonamidesand their acetylated metabolites in aquatic products[J]. Food Analytical Methods, 2013, 6: 1049-1055.

    [19]

    Zhang Y, Xu X, Qi X, et al. Determination of sulfonamides in livers using matrix solid-phase dispersion extraction high-performance liquid chrom atography[J]. Journal of Separation Science,2012,35:45. doi: 10.1002/jssc.201100600

    [20]

    Yu H, Mu H, Hu Y M. Determination of fluoroquinolones, sulfonamides, tetracyclines multiresidues simultaneously in porcine tissue by MSPD and HPLC–DAD[J]. Journal of Pharmaceutical Analysis,2012,2:76−81. doi: 10.1016/j.jpha.2011.09.007

    [21]

    Xie W, Han C, Hou J B, et al. Simultaneous determination of multiveterinary drug residues in pork meat by liquid chromatography-tandem mass spectrometry combined with solid phase extraction[J]. Journal of Separation Science,2012,35:3447−3454. doi: 10.1002/jssc.201200407

    [22] 赵巧灵, 张薇英, 汤海凤, 等. 快速溶剂萃取-超高效液相色谱-串联质谱法测定养殖鱼肌肉中19种磺胺类药物残留[J]. 食品科技,2019,44(12):335−341. [Zhao Q L, Zhang W Y, Tang H F, et al. Determination of 19 sulfonamides residues in cultured fish muscle with accelerated solvent extraction by high performance liquid chromatography-tandem mass spectrometry[J]. Food Science and Technology,2019,44(12):335−341.
    [23] 陈兴连, 林 涛, 刘兴勇, 等. 超高效液相色谱-串联质谱法快速测定鱼和虾中多类禁、限用兽药残留[J]. 色谱,2020,38(5):538−546. [Chen X L, Lin Tao, Liu X Y, et al. Rapid determination of multiple prohibited and restricted veterinary drugresidues in fish and shrimp by ultra high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography,2020,38(5):538−546.
    [24] 廖夏云, 杨黎, 刘星, 等. 蜂胶胶囊中多种硝基咪唑类药物残留的检测[J]. 现代食品科技,2020,36(5):295−303,191. [Liao X Y, Yang L, Liu X, et al. Determination the residues of nitroimidazoles in propolis capsules by LC-MS/MS[J]. Modern Food Science and Technology,2020,36(5):295−303,191.
    [25] 郑璇, 张晓岭, 邹家素, 等. 超高效液相色谱-三重四极杆质谱法测定地表水和废水中的19种磺胺类抗生素[J]. 理化检验(化学分册),2018,54(6):680−687. [Zhen X, Zhang X L, Zou J S, et al. Determination of 19 sulfonamide antibiotics in suface water and waste water by ultra hight performance liquid chromatog-raphy-triple quadrupole mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis),2018,54(6):680−687.
    [26] 励炯, 孙 岚, 王红青, 等. 分散固相萃取净化/高效液相色谱-串联质谱法测定水产品中的5种硝基咪唑类药物残留[J]. 分析测试学报,2017,36(11):1357−1362. [Li T, Sun L, Wang H Q, et al. Determination of five nitromidazoles in aquatic products by high performance liquid chromatography-tandem mass spectrometry combined with dispersive solid phase extraction[J]. Journal of Instrumental Analysi,2017,36(11):1357−1362. doi: 10.3969/j.issn.1004-4957.2017.11.011
    [27]

    Fedorova G, Nebesky V, Randak T, et al. Simultaneous determination of 32 antibiotics in aquaculture products using LC-MS/MS[J]. Chemical Papers,2014,68:29−36.

    [28] 曲斌. QuEChERS在动物源性食品兽药残留检测中的研究进展[J]. 食品科学,2013,34(5):327−331. [Q B. Advances in application of QuEChERS for detection of veterinary drug residues in animal-derived foods[J]. Food Science,2013,34(5):327−331.
    [29] 黄子敬, 王晓玲, 杨钦沾, 等. 超高效液相色谱-串联质谱法同时测定畜禽肉中磺胺类、喹诺酮类、硝基咪唑类兽药残留[J]. 分析试验室,2014,333(10):1184−1188. [Huang Z J, Wang X L, Yang Q Z, et al. Determination of sulfonamides, quinolones and nitroimidazoles in meat by ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory,2014,333(10):1184−1188.
    [30]

    Won S Y, Chang H L, Chang HS, et al. Monitoring of 14 sulfonamide antibiotic residues in marine products using HPLC-PDA and LC-MS/MS[J]. Food Control,2011,22:1101−1107. doi: 10.1016/j.foodcont.2011.01.005

    [31] 张虹艳, 邱国玉, 吴福祥, 等. 组织研磨-QuEChERS-高效液相色谱-串联质谱法测定动物源食品中磺胺类药物残留以及基质效应的研究[J]. 食品工业科技,2020,41(10):259−264,270. [Zhang H Y, Qiu G Y, Wu F X, et al. Determination of sulfonamides in animal-originated foods by grinder-QuEChERS-high performance liquid chromatolgraphy-tandem mass spectrometry and research on matrix effects[J]. Science and Technology of Food Industry,2020,41(10):259−264,270.
    [32] 李蓉, 杨璐齐, 罗阳丹, 等. QuEChERS/UPLC-Q-Orbitrap HRMS法测定水产及水产加工品中16种苯并咪唑类与13种硝基咪唑类药物残留[J]. 分析测试学报,2018,37(5):547−555. [Li R, Yang L Q, Luo Y D, et al. Determination of 16 benzimidazoles and 13 nitroimidazoles residues in fish and fishery products by UPLC-Q-Orbitrap HRMS with QuEChERS[J]. Chinese Journal of Analysis Laboratory,2018,37(5):547−555. doi: 10.3969/j.issn.1004-4957.2018.05.005
    [33] 国家质量监督检验检疫总局. SN/T 2624-2010 动物源性食品中多种碱性药物残留量的检测方法液相色谱-质谱/质谱法[S]. 北京: 中华人民共和国出入境检验检疫行业标准, 2010.

    General Administration of Quality Supervision. Inspection and Quarantine of the People's Republic of China. SN/T 2624-2010 Determination of several alkaline drug residues in animal food by liquid chromatography-mass spectrometry[S]. Beijing: Industry Standard for Entry-exit inspection and Quarantine of the People's Republic of China, 2010.

    [34] 中华人民共和国海关总署. SN/T 1626-2019 出口肉及肉制品中甲硝唑、替硝唑、奥硝唑、洛硝哒唑、二甲硝咪唑、赛克硝唑残留量测定方法液相色谱-质谱/质谱法[S]. 北京: 中华人民共和国出入境检验检疫行业标准, 2019.

    General Administration of Customs, P, R, China. SN/T 1626-2019 Methods for the determination of metronidazole, tinidazole, ornidazole, lonidazole, dimetr-Imazole, and secnidazole residues in exported meat and meat products liquid chromatography-mass spectrometry[S]. Beijing: Industry Standard for Entry-exitins-pection and Quarantine of the People’s Republic of China, 2019.

    [35] 中华人民共和国农业部. 农业部1025号公告-23-2008. 动物源食品中磺胺类药物残留检测液相色谱-串联质谱法[S]. 北京: 国家标准出版社, 2008.

    Ministry of Agriculture of the PRC. Ministry of Agriculture No. 1025-23-2008. Determination of sulfonamides residues in animal food by liquid Chromatography-mass spectrometry[S]. Beijing: National Standards Press, 2008.

图(6)  /  表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-28
  • 网络出版日期:  2021-06-14
  • 刊出日期:  2021-08-31

目录

/

返回文章
返回