Protective Effect of Nostoc sphaeroids Kütz on Oxidative Stress in Hyperlipidemic Mice
-
Abstract: Most health problems associated with aging, such as wrinkles, heart disease and Alzheimer's disease were caused by excessive oxidative stress in the body. Hyperlipidemia caused by high-fat diet(HFD) would lead to lipid metabolism disorder, oxidative stress and so on. The purpose of this study was to investigate the protective effect of Nostoc sphaeroids Kütz(NSK) on diet-induced hyperlipidemia in mice. In the experiment, six-week-old C57BL/6j male mice were fed with high-fat diet(HFD) for 4 weeks, and then fed with high-fat diet supplemented with different doses of NSK for 6 weeks. Results showed that: High-fat diet could lead to hyperlipidemia and obvious dyslipidemia in mice. The addition of NSK to high-fat diet decreased serum triglyceride(TG), serum total cholesterol(TC), low density lipid cholesterol(LDL-C), while high density lipid cholesterol(HDL-C) increased significantly(P<0.05). It could also significantly reduce the liver index and the enzyme activities of alanine transaminase(ALT) and aspartate transaminase(AST). Through the results of this experiment, it was found that the level of malondialdehyde (MDA) in the liver tissue of 2.5% and 7.5% NSK group decreased, while total antioxidant capacity(T-AOC), hepatic superoxide dismutase(SOD) and glutathione(GSH) increased, and the difference was statistically significant(P<0.05). Furthermore, the expression of LDLR,CYP7a1 and LXR-α in liver tissue of mice supplemented with NSK in HFD significantly increased(P<0.05). In conclusion, NSK hadlipid-lowering effect on HFD-fed mice and it might be related to increase the antioxidant activity and gene expression of LDLR and CYP7a1.
-
Keywords:
- Nostoc sphaeroids Kütz /
- hyperlipidemia /
- mice /
- oxidative stress
摘要: 大多数与衰老相关的健康问题,如皱纹、心脏病和阿尔茨海默氏症,都是由体内过度的氧化应激引起的。高脂饮食(HFD)引起的高脂血症会导致机体脂质代谢紊乱、氧化应激等,为探究葛仙米对饮食诱导的小鼠高脂血症的保护作用,实验选用6周龄C57BL/6J雄性小鼠,先喂饲高脂饲料(HFD)4周,然后在高脂饲料中添加不同剂量的葛仙米饲喂6周。结果表明,高脂饮食可导致小鼠高脂血症和明显的血脂异常。高脂饮食中添加葛仙米可降低血清甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C),升高高密度脂蛋白胆固醇(HDL-C),能显著降低肝指数和丙氨酸氨基转移酶(ALT)、天冬氨酸氨基转移酶(AST)活性。2.5%和7.5%葛仙米组小鼠肝组织丙二醛(MDA)含量显著降低,总抗氧化能力(T-AOC)、肝组织超氧化物歧化酶(SOD)和谷胱甘肽(GSH)含量显著升高(P<0.05)。此外,葛仙米还能显著增加肝组织低密度脂蛋白受体、CYP7a1和LXR-α的表达(P<0.05)。综上,葛仙米对高脂饲料喂养的小鼠具有降脂作用,其机制可能与提高LDLR和CYP7a1的抗氧化活性及基因表达有关。 -
Figure 1. Body weight and food utilization rate
Notes: (a). Body weight during modeling; (b). Body weight during NSK intervation; (c). Food utilization rate during modeling; (d). Food utilization rate during NSK intervation (). Bars marked with different letters represent statistically significant (P<0.05), whereas bars labeled with the same letter indicate no statistically significant difference between the groups (P>0.05).
Figure 2. Effects of NSK on lipid levels in serum
Notes: (a).Lipid levels at week 1~4 , (b). Lipid levels at week 5~10; Values represent mean ± SEM; n=10 in each group. Bars marked with different letters represent statistically significant (P<0.05), whereas bars labeled with the same letter indicate no statistically significant difference between the groups (P>0.05).
Figure 3. Effects of NSK on liver injury in mice with high-fat die
Notes: (a). Typical liver morphological images, C: Control, M: HFD, L:NSK (2.5%), H: NSK (7.5%); (b). ALT in serum; (c). AST in serum. Bars marked with different letters represent statistically significant (P<0.05), whereas bars labeled with the same letter indicate no statistically significant difference between the groups (P>0.05).
Figure 4. Effect of NSK on lipid peroxidation and antioxidants in liver
Notes: (a).The concentration of T-AOC in liver; (b). The enzyme activity of SOD in liver; (c). The concentration of GSH in liver; (d). The concentration of MDA in liver; Values represent mean±SEM, n=10 in each group;Bars marked with different letters represent statistically significant (P<0.05), whereas bars labeled with the same letter indicate no statistically significant difference between the groups (P>0.05).
Table 1 Composition of assay diets
Ingredient (g) Control diet HFD NSK (2.5%) NSK (7.5%) Cornstarch 465.7 235.7 233.2 228.2 Casein 140 110 110 110 Dextrinized cornstarch 155 155 155 155 Sucrose 100 100 100 100 Soybean oil 40 40 40 40 Choline bitartrate 2.5 2.5 2.5 2.5 Fiber1 50 50 50 50 Mineral mix2 35 35 35 35 Vitamin mix3 10 10 10 10 L-Cysteine 1.8 1.8 1.8 1.8 Lard 0 150 150 150 Cholesterol 0 10 10 10 yolk 0 100 100 100 NSK powder 0 0 25 75 Note:1: Solka-Floc cellulose. 2: AIN-93 mineral mix. 3: AIN-93 vitamin. Table 2 Primer pairs used for the real-time quantitative PCR analysis
Genbank ID Gene Name Primer Sequence (5' to 3') NM_007393.3 β-actin GTGACGTTGACATCCGTAAAGA GTAACAGTCCGCCTAGAAGCAC NM_001252658.1 LDLR ATTCAGTCCCAGGCAGCGTATC TTCTTGATCTTGGCGGGTGTTC NM_001278601.1 CYP7a1 GGGGATTGCTGTGGTAGTGAG CAGGGAGTTTGTGATGAAGTGG NM_001177730.1 LXR-α CCCACGACCCACTGATGTTC CACAAAGGACACGGTGAAACA Table 3 Effect of Nostoc sphaeroides Kütz on liver index of mice
Dose animals body weight liver weight Liver index(%) Control 10 24.73±0.88c 0.86±0.27c 3.45±0.94d HFD 10 28.73±1.08a 1.63±0.39a 5.53±1.02a 2.5%NSK 10 27.05±0.86ab 1.53±0.42a 5.16±1.37ab 7.5%NSK 10 26.26±0.61b 1.25±0.34b 4.66±0.96bc Notes: Values represent mean ± SEM; n=10 in each group. Superscript letters represent statistically significant differences (P<0.05). Instances of the same letter between groups indicate that no statistically significant difference was found (P>0.05). -
[1] Hoyt C L, Burnette J L, Auster-Gussman L. “Obesity is a disease”: Examining the self-regulatory impact of this public-health message[J]. Psychological Science, 2014, 25(4): 997−1002.
[2] Bin-Jumah M N. Monolluma quadrangula protects against oxidative stress and modulates LDL receptor and fatty acid synthase gene expression in hypercholesterolemic rats[J]. Oxidative Medicine and Cellular Longevity,2018,2018:1−10.
[3] Lee K S, Chun S Y, Kwon Y S, et al. Deep sea water improves hypercholesterolemia and hepatic lipid accumulation through the regulation of hepatic lipid metabolic gene expression[J]. Molecular Medicine Reports,2017,15(5):2814−2822. doi: 10.3892/mmr.2017.6317
[4] Daveri E, Cremonini E, Mastaloudis A, et al. Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice[J]. Redox Biology,2018,18:16−24. doi: 10.1016/j.redox.2018.05.012
[5] Xu M X, Wang M, Yang W W. Gold-quercetin nanoparticles prevent metabolic endotoxemia-induced kidney injury by regulating TLR4/NF-kappaB signaling and Nrf2 pathway in high fat diet fed mice[J]. International Journal of Nanomedicine,2017,12:327−345. doi: 10.2147/IJN.S116010
[6] Buckman L B, Hasty A H, Flaherty D K, et al. Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system[J]. Brain Behavior and Immunity,2014,35:33−42. doi: 10.1016/j.bbi.2013.06.007
[7] Agrimi J, Spalletti C, Baroni C, et al. Obese mice exposed to psychosocial stress display cardiac and hippocampal dysfunction associated with local brain-derived neurotrophic factor depletion[J]. EBioMedicine,2019,47:384−401. doi: 10.1016/j.ebiom.2019.08.042
[8] Kuang W, Zhang X, Lan Z. Flavonoids extracted fromLinaria vulgaris protect against hyperlipidemia and hepatic steatosis induced by western-type diet in mice[J]. Archives of Pharmacal Research,2018,41(12):1190−1198. doi: 10.1007/s12272-017-0941-y
[9] La Frano M R, Hernandez-Carretero A, Weber N, et al. Diet-induced obesity and weight loss alter bile acid concentrations and bile acid-sensitive gene expression in insulin target tissues of C57BL/6J mice[J]. Nutrition Research,2017,46:11−21. doi: 10.1016/j.nutres.2017.07.006
[10] Miyamoto J, Igarashi M, Watanabe K, et al. Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids[J]. Nature Communications,2019,10(1):4007−4015. doi: 10.1038/s41467-019-11978-0
[11] Al-Rejaie S S, Aleisa A M, Sayed-Ahmed M M, et al. Protective effect of rutin on the antioxidant genes expression in hypercholestrolemic male Westar rat[J]. BMC Complementary and Alternative Medicine,2013,13(1):136. doi: 10.1186/1472-6882-13-136
[12] Förstermann U. Oxidative stress in vascular disease: Causes, defense mechanisms and potential therapies[J]. Nature Clinical Practice Cardiovascular Medicine,2008,5(6):338−349. doi: 10.1038/ncpcardio1211
[13] Alcala M, Calderon-Dominguez M, Bustos E, et al. Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice[J]. Scientific Reports,2017,7(1):16082. doi: 10.1038/s41598-017-16463-6
[14] Seifried H E, Anderson D E, Fisher E I, et al. A review of the interaction among dietary antioxidants and reactive oxygen species[J]. Journal of Nutritional Biochemistry,2007,18(9):567−579. doi: 10.1016/j.jnutbio.2006.10.007
[15] Schulz M D, Atay C, Heringer J, et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity[J]. Nature,2014,514(7523):508−512. doi: 10.1038/nature13398
[16] Beyaz S, Mana M D, Roper J, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors[J]. Nature,2016,531(7592):53−58. doi: 10.1038/nature17173
[17] Zalewska A, Maciejczyk M, Szulimowska J, et al. High-Fat diet affects ceramide content, disturbs mitochondrial redox balance, and induces apoptosis in the submandibular glands of mice[J]. Biomolecules,2019,9(12):877. doi: 10.3390/biom9120877
[18] Rosas-Villegas A, Sánchez-Tapia M, Avila-Nava A, et al. Differential effect of sucrose and fructose in combination with a high fat diet on intestinal microbiota and kidney oxidative stress[J]. Nutrients,2017,9(4):393. doi: 10.3390/nu9040393
[19] Johnson H E, King S R, Banack S A, et al. Cyanobacteria (Nostoc commune) used as a dietary item in the peruvian highlands produce the neurotoxic amino acid BMAA[J]. Journal of Ethnopharmacology,2008,118(1):159−165. doi: 10.1016/j.jep.2008.04.008
[20] Ku C S, Kim B, Pham T X, et al. Blue-Green algae inhibit the development of atherosclerotic lesions in apolipoprotein E knockout mice[J]. Journal of Medicinal Food,2015,18(12):1299−1306. doi: 10.1089/jmf.2015.0025
[21] Locati M, Mantovani A, Sica A. Macrophage activation and polarization as an adaptive component of innate immunity[J]. Advances in Immunology,2013,120:163−184.
[22] Li H, Su L, Chen S, et al. Physicochemical characterization and functional analysis of the polysaccharide from the edible microalga nostoc sphaeroides[J]. Molecules,2018,23(2):508. doi: 10.3390/molecules23020508
[23] Guo M, Ding G B, Guo S, et al. Isolation and antitumor efficacy evaluation of a polysaccharide from Nostoc commune Vauch[J]. Food & Function,2015,6(9):3035−3044.
[24] Wei F, Liu Y, Bi C, et al. Nostoc sphaeroids Kütz powder ameliorates diet-induced hyperlipidemia in C57BL/6j mice[J]. Food & Nutrition Research,2019,63:3618.
[25] Kang H J, Pichiah P B T, Abinaya R V, et al. Hypocholesterolemic effect of quercetin-rich onion peel extract in C57BL/6J mice fed with high cholesterol diet[J]. Food Science & Biotechnology,2016,25(3):855−860.
[26] Yang G, Lee H E, Lee J Y. A pharmacological inhibitor of NLRP3 inflammasome prevents non-alcoholic fatty liver disease in a mouse model induced by high fat diet[J]. Scientific Reports,2016,6(1):24399. doi: 10.1038/srep24399
[27] Li L, Zhao Z, Xia J, et al. A long-term high-fat/high-sucrose diet promotes kidney lipid deposition and causes apoptosis and glomerular hypertrophy in bama minipigs[J]. PLoS One,2015,10(11):e142884.
[28] Zhai X, Lin D, Zhao Y, et al. Effects of dietary fiber supplementation on fatty acid metabolism and intestinal microbiota diversity in C57BL/6J mice fed with a high-fat diet[J]. Journal of Agricultural and Food Chemistry,2018,66(48):12706−12718. doi: 10.1021/acs.jafc.8b05036
[29] Petrov P D, García Mediavilla M V, Guzmán C, et al. A network involving gut microbiota, circulating bile acids, and hepatic metabolism genes that protects against non-alcoholic fatty liver disease[J]. Molecular Nutrition & Food Research,2019,63(20):e1900487.
[30] Mueller K M, Hartmann K, Kaltenecker D, et al. Adipocyte glucocorticoid receptor deficiency attenuates aging-and HFD-induced obesity and impairs the Feeding-Fasting transition[J]. Diabetes,2017,66(2):272−286.
[31] Wei F, Liu Y, Bi C, et al. Nostoc sphaeroids Kütz ameliorates hyperlipidemia and maintains the intestinal barrier and gut microbiota composition of high-fat diet mice[J]. Food ence& Nutrition,2020,8(4):2348−2359.
[32] Ke W, Wang P, Wang X, et al. Dietary Platycodon grandiflorus attenuates hepatic insulin resistance and oxidative stress in high-fat-diet induced non-alcoholic fatty liver disease[J]. Nutrients,2020,12(2):480. doi: 10.3390/nu12020480
[33] Zilu S, Qian H, Haibin W, et al. Effects of XIAP on high fat diet-induced hepatic steatosis: A mechanism involving NLRP3 inflammasome and oxidative stress[J]. Aging,2019,11(24):12177−12201. doi: 10.18632/aging.102559
[34] Wang Z, Komatsu T, Ohata Y, et al. Effects of rikkunshito supplementation on resistance to oxidative stress and lifespan in mice[J]. Geriatrics & Gerontology International,2019,20(3):238−247.
-
期刊类型引用(5)
1. 汪端华,杨建国,李倩,王鑫,吴双花. 芋资源遗传多样性分析. 分子植物育种. 2024(14): 4754-4766 . 百度学术
2. 杨雯,邹佳琪,刘胜楠,刘士伟,薛婷芳,孟星坚,于雷,詹晓峰,毕云枫. 人参α-淀粉酶抑制肽的降血糖作用. 现代食品科技. 2024(07): 24-34 . 百度学术
3. 唐金鑫,由高飞,李秋阳,徐萍,刘士伟,于雷,毕云枫. 超声波辅助酶解花生蛋白制备α-淀粉酶抑制肽工艺优化. 食品工业科技. 2022(04): 161-168 . 本站查看
4. 马二兰,张帆,吕春秋,涂连,王伟良,林莹. 荔浦芋球蛋白结构表征及其对HepG2细胞糖代谢的影响. 食品工业科技. 2022(15): 359-365 . 本站查看
5. 戴修纯,罗燕羽,黄绍力,刘绍钦,曹健松. 广东省芋头产业现状与发展对策. 广东农业科学. 2021(06): 126-135 . 百度学术
其他类型引用(4)