• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

超声技术在微生物发酵中的应用及其机理研究进展

刘利平, 王亚珍, 杨蕾, 何荣海, 马海乐, 孙玲

刘利平, 王亚珍, 杨蕾, 何荣海, 马海乐, 孙玲. 超声技术在微生物发酵中的应用及其机理研究进展[J]. 食品工业科技, 2021, 42(6): 357-362. DOI: 10.13386/j.issn1002-0306.2020060317
引用本文: 刘利平, 王亚珍, 杨蕾, 何荣海, 马海乐, 孙玲. 超声技术在微生物发酵中的应用及其机理研究进展[J]. 食品工业科技, 2021, 42(6): 357-362. DOI: 10.13386/j.issn1002-0306.2020060317
LIU Liping, WANG Yazhen, YANG Lei, HE Ronghai, MA Haile, SUN Ling. Research Progress of Application and Mechanism of Ultrasonic Technology in Microbial Fermentation[J]. Science and Technology of Food Industry, 2021, 42(6): 357-362. DOI: 10.13386/j.issn1002-0306.2020060317
Citation: LIU Liping, WANG Yazhen, YANG Lei, HE Ronghai, MA Haile, SUN Ling. Research Progress of Application and Mechanism of Ultrasonic Technology in Microbial Fermentation[J]. Science and Technology of Food Industry, 2021, 42(6): 357-362. DOI: 10.13386/j.issn1002-0306.2020060317

超声技术在微生物发酵中的应用及其机理研究进展

基金项目: 

国家自然科学基金项目(31600197);江苏大学基金项目(14JDG158)。

详细信息
    作者简介:

    刘利平(1994-),女,硕士研究生,研究方向:食品物理加工与发酵,E-mail:l1228llp@163.com。

    通讯作者:

    孙玲(1982-),女,博士,讲师,研究方向:食品生物技术,E-mail:sunling090909@163.com。

  • 中图分类号: TS201.3

Research Progress of Application and Mechanism of Ultrasonic Technology in Microbial Fermentation

  • 摘要: 随着微生物发酵技术的逐渐成熟,微生物发酵在食品工业中的应用也日趋广泛。超声技术作为一种新型的低耗能物理处理手段,已广泛应用于食品工业,尤其是发酵工程。超声技术在发酵工程中的适当应用,可以提高微生物的发酵效率。本文综述了超声技术在微生物发酵中的应用,主要包括超声技术在非破坏性发酵监测与辅助微生物发酵中的应用,并探讨了超声技术辅助微生物发酵的作用机理,主要涉及微生物对超声作用的多种响应以及细胞为响应超声作用所引起的代谢物变化,为超声技术在食品发酵领域中的应用提供理论基础。
    Abstract: With the development of microbial fermentation technology, microbial fermentation is widely used in food industry. As a new physical treatment method with low energy consumption, ultrasonic technology has been widely used in food industry, especially in fermentation engineering. The appropriate application of ultrasonic technology in fermentation engineering can improve the fermentation efficiency of microorganisms. The article summarizes the application of ultrasonic technology in microbial fermentation, including the application of non-destructive fermentation monitoring and ultrasound-assisted microbial fermentation. And the mechanism of ultrasound-assisted fermentation is explored, including the various responses of microorganisms to ultrasound and the changes of metabolites caused by ultrasound in cells. These studies provide theoretical basis for the application of ultrasonic technology in the field of food fermentation.
  • [1] 张瑞婷,周涛,宋潇潇,等. 灵芝活性成分及其药理作用的研究进展[J]. 安徽农业科学,2018,46(3):18-19

    ,22.

    [2] 曾昕. 小白链霉菌同步代谢葡萄糖和甘油合成ε-聚赖氨酸的生理机制研究[D]. 无锡:江南大学,2016.
    [3] 蒋秋琪,吕雪芹,崔世修,等.代谢工程改造毕赤酵母发酵生产谷胱甘肽[J].食品与发酵工业,2020,46(17):9-14.
    [4] 熊锋. 低强度超声波对酿酒酵母增殖和发酵效率影响的研究[D]. 镇江:江苏大学,2017.
    [5]

    Huang G P,Chen S W,Tang Y X,et al. Stimulation of low intensity ultrasound on fermentation of skim milk medium for yield of yoghurt peptides by Lactobacillus paracasei[J].Ultrasonics Sonochemistry,2019,51:315-324.

    [6] 古丽加马力·艾萨,邢军,马龙,等.开菲尔发酵过程中风味物质动态变化[J].食品与发酵工业,2020,46(12):173-178.
    [7]

    Ojha K S,Mason T J,O'Donnell C P,et al. Ultrasound technology for food fermentation applications[J].Ultrasonics Sonochemistry,2017,34:410-417.

    [8]

    Huang G P,Tang Y X,Sun L,et al. Ultrasonic irradiation of low intensity with a mode of sweeping frequency enhances the membrane permeability and cell growth rate of Candida tropicalis[J].Ultrasonics Sonochemistry,2017,37:518-528.

    [9]

    Kwiatkowska B,Bennett J,Akunna J,et al. Stimulation of bioprocesses by ultrasound[J].Biotechnology Advances,2011,29(6):768-780.

    [10]

    Schläfer O,Sievers M,Klotzbücher H,et al. Improvement of biological activity by low energy ultrasound assisted bioreactors[J].Ultrasonics,2000,38(1-8):711-716.

    [11]

    Gani A,Baba W N,Ahmad M,et al. Effect of ultrasound treatment on physico-chemical,nutraceutical and microbial quality of strawberry[J].LWT-Food Science and Technology,2016,66:496-502.

    [12]

    Bermúdez-Aguirre D,Corradini M G,Mawson R,et al. Modeling the inactivation of Listeria innocua in raw whole milk treated under thermo-sonication[J].Innovative Food Science & Emerging Technologies,2009,10(2):172-178.

    [13]

    Novoa-Díaz D,Rodríguez-Nogales J M,Fernández-Fernández E,et al. Ultrasonic monitoring of malolactic fermentation in red wines[J].Ultrasonics,2014,54(6):1575-1580.

    [14]

    Dahroud B D,Mokarram R R,Khiabani M S,et al. Low intensity ultrasound increases the fermentation efficiency of Lactobacillus casei subsp.casei ATTC 39392[J].International Journal of Biological Macromolecules,2016,86:462-467.

    [15]

    Resa P,Elvira L,Montero de Espinosa F,et al. Ultrasonic velocity in water-ethanol-sucrose mixtures during alcoholic fermentation[J].Ultrasonics,2005,43(4):247-252.

    [16]

    Wang F,Ma A Z,Guo C,et al. Ultrasound-intensified laccase production from Trametes versicolor[J].Ultrasonics Sonochemistry,2013,20(1):118-124.

    [17]

    Dai C H,Xiong F,He R H,et al. Effects of low-intensity ultrasound on the growth,cell membrane permeability and ethanol tolerance of Saccharomyces cerevisiae[J].Ultrasonics Sonochemistry,2017,36:191-197.

    [18]

    Tizazu B Z,Roy K,Moholkar V S.Mechanistic investigations in ultrasound-assisted xylitol fermentation[J].Ultrasonics Sonochemistry,2018,48:321-328.

    [19] 罗娟. 超声波对枯草芽孢杆菌液态发酵豆粕及其产物功能特性的影响[D]. 镇江:江苏大学,2016.
    [20] 张赫男. 桑黄菌的物理诱变及其超声辅助发酵研究[D]. 镇江:江苏大学,2014.
    [21] 田勤娟. 以酿酒酵母为模式真菌的白藜芦醇抗氧化研究[D]. 天津:天津大学,2018.
    [22]

    Kudo N,Okada K,Yamamoto K.Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells[J]. Biophysical Journal,2009,96(12):4866-4876.

    [23]

    Tzu-Yin W,Wilson K E,Machtaler S,et al. Ultrasound and microbubble guided drug delivery:Mechanistic understanding and clinical implications[J].Current Pharmaceutical Biotechnology,2013,14(8):743-752.

    [24]

    Deng C X.Targeted drug delivery across the blood-brain barrier using ultrasound technique[J].Therapeutic Delivery,2010,1(6):819-848.

    [25]

    Fujii H,Matkar P,Liao C,et al. Optimization of ultrasound-mediated anti-angiogenic cancer gene therapy[J].Molecular Therapy-Nucleic Acids,2013,2:e94.

    [26]

    Lentacker I,De Cock I,Deckers R,et al. Understanding ultrasound induced sonoporation:Definitions and underlying mechanisms[J].Advanced Drug Delivery Reviews,2014,72:49-64.

    [27]

    Delalande A,Kotopoulis S,Postema M,et al. Sonoporation:Mechanistic insights and ongoing challenges for gene transfer[J]. Gene,2013,525(2):191-199.

    [28]

    Delalande A,Kotopoulis S,Rovers T,et al. Sonoporation at a low mechanical index[J].Bubble Science,Engineering & Technology,2011,3(1):3-12.

    [29]

    Pitt W G,Ross S A.Ultrasound increases the rate of bacterial cell growth[J].Biotechnology Progress,2003,19(3):1038-1044.

    [30]

    Zhou Y,Kumon R E,Cui J M,et al. The size of sonoporation pores on the cell membrane[J].Ultrasound in Medicine & Biology,2009,35(10):1756-1760.

    [31]

    Liu R,Zhang X,Ren A,et al. Heat stress-induced reactive oxygen species participate in the regulation of HSP expression,hyphal branching and ganoderic acid biosynthesis in Ganoderma lucidum[J].Microbiological Research,2018,209:43-54.

    [32]

    Lu Z L,Kong X X,Lu Z M,et al. Para-aminobenzoic acid(PABA)synthase enhances thermotolerance of mushroom Agaricus bisporus[J].PLoS One,2014,9(3):e91298.

    [33]

    Kong W W,Huang C Y,Chen Q,et al. Nitric oxide is involved in the regulation of trehalose accumulation under heat stress in Pleurotus eryngii var.tuoliensis[J].Biotechnology Letters,2012,34(10):1915-1919.

    [34]

    Leach M D,Budge S,Walker L,et al. Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast[J].PLoS Pathogens,2012,8(12):e1003069.

    [35]

    Song C,Chen Q,Wu X L,et al. Heat stress induces apoptotic-like cell death in two Pleurotus species[J].Current Microbiology,2014,69(5):611-616.

    [36]

    Liu Y N,Zhang T J,Lu X X,et al. Membrane fluidity is involved in the regulation of heat stress induced secondary metabolism in Ganoderma lucidum[J].Environmental Microbiology,2017,19(4):1653-1668.

    [37] 滕中秋,付卉青,贾少华,等.植物应答非生物胁迫的代谢组学研究进展[J].植物生态学报,2011,35(1):110-118.
    [38] 管仁伟,林慧彬,林建强.干旱及盐胁迫对黄芩种子萌发和黄酮合成关键酶活性的影响[J].中药材,2020,43(1):9-14.
    [39] 杨松. 铈诱导子强化红豆杉细胞次生代谢产物生产的信号机制研究[D]. 天津:天津大学,2007.
    [40]

    Guo J F,Qi J F,He K L,et al. The Asian corn borer Ostrinia furnacalis feeding increases the direct and indirect defence of mid-whorl stage commercial maize in the field[J].Plant Biotechnology Journal,2019,17(1):88-102.

    [41]

    Liu M M,Feng M X,Yang K,et al. Transcriptomic and metabolomic analyses reveal antibacterial mechanism of astringent persimmon tannin against Methicillin-resistant Staphylococcus aureus isolated from pork[J].Food Chemistry,2020,309:125692.

    [42] 向杰,陈敬师,夏鑫鑫,等.基于转录-代谢联合分析哈茨木霉ACCC32527对NaCl胁迫的分子调节[J].中国农业科学,2019,52(12):2079-2091.
    [43]

    Zhang Z L,Xiong F,Wang Y,et al. Fermentation of Saccharomyces cerevisiae in a one liter flask coupled with an external circulation ultrasonic irradiation slot:Influence of ultrasonic mode and frequency on the bacterial growth and metabolism yield[J].Ultrasonics Sonochemistry,2019,54:39-47.

    [44]

    Chang Y W,Zhang X X,Lu M X,et al. Transcriptome analysis of Liriomyza trifolii(Diptera:Agromyzidae)in response to temperature stress[J].Comparative Biochemistry and Physiology.Part D,Genomics & Proteomics,2020,34:100677.

    [45]

    Chen J F,Tsai Y T,Lai Y H,et al. Proteomic analysis of Antrodia Cinnamomea-induced ER stress in liver cancer cells[J].Journal of Pharmaceutical and Biomedical Analysis,2020,187:113142.

    [46]

    Lu Y H,Lam H,Pi E X,et al. Comparative metabolomics in Glycine max and Glycine soja under salt stress to reveal the phenotypes of their offspring[J].Journal of Agricultural and Food Chemistry,2013,61(36):8711-8721.

    [47]

    Ren X F,Zhang X,Liang Q F,et al. Effects of different working modes of ultrasound on structural characteristics of zein and ACE inhibitory activity of hydrolysates[J].Journal of Food Quality,2017,2017:1-8.

    [48]

    Huang L R,Ding X N,Dai C H,et al. Changes in the structure and dissociation of soybean protein isolate induced by ultrasound-assisted acid pretreatment[J].Food Chemistry,2017,232:727-732.

  • 期刊类型引用(25)

    1. 牛晓雨,邢媛媛,李大彪. 植物活性成分对动物肠道屏障功能的调控作用及其机制. 畜牧兽医学报. 2024(04): 1467-1477 . 百度学术
    2. 魏炳琦,高小雨,刘延鑫,王义翠. 红枣多糖的结构、生物学活性及产品开发进展. 食品工业科技. 2024(12): 1-9 . 本站查看
    3. 陈浩,尹君叶,郝建雄,赵丹丹. 红枣多糖的生物活性及作用机制研究进展. 食品工业科技. 2024(13): 342-351 . 本站查看
    4. 李彬,赵彩云,吴斌,郑力,傅樱花. 红枣多糖的提取工艺优化研究. 保鲜与加工. 2024(06): 48-54 . 百度学术
    5. 张晓新,范春娟,王君巧,聂少平. 吴茱萸多糖的提取纯化与结构解析. 南昌大学学报(理科版). 2024(03): 261-270 . 百度学术
    6. 李安诺,朱禹,岳仁宋. 大枣对2型糖尿病大鼠摄食及肠道炎症损伤的影响及机制研究. 食品工业科技. 2024(19): 307-315 . 本站查看
    7. 吴俊燕,马超,赵平. 黑地黄丸对慢性肾功能衰竭的作用机制研究进展. 疑难病杂志. 2024(10): 1260-1263 . 百度学术
    8. 吴喆,朱佳敏,刘军,符小玉,娄磊,涂亦娴,秦新政,艾合买提江·艾海提. 红枣主要活性成分及其功能活性研究进展. 现代食品科技. 2024(09): 359-369 . 百度学术
    9. 吕英楠,田颖颖,刘闯,赵新月,李依林,左泽平,曹欣垚,杨硕,王婷婷,杨海润,王志斌. 人参归脾丸防治环磷酰胺化疗胃肠道反应的实验研究. 中南药学. 2024(11): 2846-2850 . 百度学术
    10. 张帅,高媛,杨杨,马春敏,许馨予,边鑫,张娜. 多糖的生物活性及其对胃肠道功能的影响. 中国食品学报. 2024(10): 438-448 . 百度学术
    11. 徐倩倩,杨万群,王玉波,吴菲,代娟娟,秦蜜蜜,庄金秋,王艳,沈志强,李继昌. 熟地黄多糖对环磷酰胺诱导的免疫抑制小鼠的免疫调节作用研究. 中国畜牧兽医. 2023(02): 693-703 . 百度学术
    12. 闫金玲,王明亚,范京惠,张秀江,李树静,肖阳,李秋凤,曹玉凤. 枣粉饲料的营养价值及其在动物生产中的应用. 饲料研究. 2023(10): 139-143 . 百度学术
    13. 代琪,白苑丁,叶俏波,杨小艳,赵小勤,王欣. 不同产地大枣化学成分及其药理作用研究进展. 中国药物评价. 2023(06): 506-511 . 百度学术
    14. 毛欣雨,梁慧,王行,董娜. 植物多糖对动物肠道的保护作用及其分子机制. 中国畜牧兽医. 2022(01): 150-160 . 百度学术
    15. 张喆萍,李瑞银,李树静,李建国,沈宜钊,高艳霞,李妍,范京惠,谢鹏,李秋凤,曹玉凤. 饲粮添加发酵枣粉对高温季节荷斯坦公牛生长性能、免疫性能和抗氧化性能的影响. 动物营养学报. 2022(02): 1027-1039 . 百度学术
    16. 陈晓兰,宣嘉颖,王婧,冒玉娟,徐向萍,杨海峰. 桑叶多糖对免疫抑制小鼠肠道损伤和微生物多样性的调节作用. 动物营养学报. 2022(03): 1996-2008 . 百度学术
    17. 沈柯辰,吴现华,刘静,张仁堂. 枣渣中功效成分提取及综合利用研究进展. 保鲜与加工. 2022(05): 96-100 . 百度学术
    18. 白冰瑶,付超,黄茂汐,吴格格,张春兰. 红枣多糖的抗氧化活性及体外模拟消化和酵解研究. 塔里木大学学报. 2022(02): 24-34 . 百度学术
    19. 张阳,梅翠,李会,熊静,王士源,程鹏,喻祥,何玉张,吴俊伟,陈红伟. 硒化修饰对白术多糖抗氧化和免疫调节作用的影响. 中国兽医学报. 2022(06): 1249-1255 . 百度学术
    20. 段睿洁,张航瑜,武玲,杨卫星,徐昆龙. 蚯蚓蛋白提取物对免疫抑制小鼠肠黏膜免疫功能的调节作用. 云南农业大学学报(自然科学). 2022(04): 597-603 . 百度学术
    21. 王明珠,丰源,李涛,赵卫国,侯启瑞,吴萍,沈曼曼. 桑叶多糖的提取纯化及在动物养殖生产中的应用研究进展. 饲料研究. 2022(17): 134-137 . 百度学术
    22. 徐光沛,蒋平,何燕飞,孙桃桃,陈存武,佘德勇,王敬利,左瑞华. 构树叶粗多糖对环磷酰胺诱导免疫抑制小鼠免疫功能的影响. 西北农业学报. 2022(07): 815-822 . 百度学术
    23. 马帅帅,黄璐琦,颜冬梅,简晖,王飞. 食药两用物质防治肠道疾病研究进展. 中医临床研究. 2022(35): 77-81 . 百度学术
    24. 陈一淑,苏小华. 植物多糖对肠道健康保护作用的研究进展. 广东饲料. 2021(05): 29-30 . 百度学术
    25. 林丽丽,冯璐,黄克,孙燕波,安黎,戴启刚,单进军,汪受传. 儿童病毒性肺炎分期防治的中医药研究进展及策略探析. 南京中医药大学学报. 2021(06): 949-957 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  343
  • HTML全文浏览量:  18
  • PDF下载量:  54
  • 被引次数: 40
出版历程
  • 收稿日期:  2020-06-28
  • 网络出版日期:  2021-03-15
  • 刊出日期:  2021-03-14

目录

    /

    返回文章
    返回
    x 关闭 永久关闭