Process Optimization of Semisolid Fermentation of Cordyceps militaris with Loofah for Cordycepin Production
-
摘要: 采用丝瓜络作为蛹虫草孢子附着点和植物油吸附基质,经半固态发酵生产虫草素,旨在提高液体表面培养的比表面积,进一步提高虫草素产量。利用单因素和Box-Behnken试验设计分别对玉米油和橄榄油条件下的加液量、孢子接种量和发酵温度进行响应面优化。结果表明,虫草素最佳工艺条件为:植物油用玉米油,加液量为3.0 mL/g,孢子接种量为9.49%,发酵温度为27.3℃,相对湿度90%。在优化后的发酵条件下,虫草素产量达到10.13 g/L,比初始半固态发酵虫草素产量提高了76.48%。综上,发酵温度的控制是获得虫草素高产的关键因素。蛹虫草丝瓜络半固态发酵能够通过提高比表面积获得较高的虫草素产量,为大规模工业化虫草素生产提供理论支持。Abstract: Cordycepin was produced by semisolid fermentation of C. militaris using loofah as the attachment point of C. militaris spores and the adsorption matrix of vegetable oils in order to improve the specific surface area of liquid surface culture and further increase the cordycepin production. Single factor experiment and Box-Behnken experiment design were used to optimize the liquid content in loofah, spore inoculum size and fermentation temperature under the conditions of corn oil and olive oil by response surface methodology, respectively. The results showed that the optimum technological conditions of cordycepin were as follows: Corn oil as vegetable oil, liquid contents in loofah 3.0 mL/g, spore inoculum size 9.49%, fermentation temperature 27.3℃, relative humidity 90%. Under the optimized fermentation conditions, the cordycepin production reached 10.13 g/L, which was 76.48% higher than the initial semisolid fermentation. It suggested that, the control of fermentation temperature was the key factor to obtain high cordycepin production. Semisolid fermentation of C. militaris with loofah could obtain higher cordycepin accumulation by increasing specific surface area, which could provide theoretical support for large-scale industrial production of cordycepin.
-
Keywords:
- cordycepin /
- loofah /
- semisolid fermentation
-
[1] 张晓峰,刘海青,黄立成. 中国虫草:历史·资源·科研[M]. 西安:陕西科学技术出版社,2008. [2] Das S K,Masuda M,Sakurai A,et al. Medicinal uses of the mushroom Cordyceps militaris:Current state and prospects[J]. Fitoterapia,2010,81(8):961-968.
[3] Xia Y,Luo F,Shang Y,et al. Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin[J]. Cell Chem Biol,2017,24(12):1479-1489.
[4] 文庭池,查岭生,康冀川,等. 蛹虫草研究和开发过程中的一些问题和展望[J]. 菌物学报,2017,36(1):14-27. [5] 康冀川,康超,文庭池,等. 虫草菌素药理学研究进展[J].菌物学报,2011,30(2):191-197. [6] Tuli H S,Sharma A K,Sandhu S S,et al. Cordycepin:A bioactive metabolite with therapeutic potential[J]. Life Sci,2013,93(23):863-869.
[7] Wongsa B,Raethong N,Chumnanpuen P,et al. Alternative metabolic routes in channeling xylose to cordycepin production of Cordyceps militaris identified by comparative transcriptome analysis[J]. Genomics,2020,112(1):629-636.
[8] Raethong N,Wang H,Nielsen J,et al. Optimizing cultivation of Cordyceps militaris for fast growth and cordycepin overproduction using rational design of synthetic media[J]. Computational and Structural Biotechnology Journal,2020,18:1-8.
[9] Masuda M,Das S K,Hatashita M,et al. Efficient production of cordycepin by the Cordyceps militaris mutant G81-3 for practical use[J]. Process Biochem,2014,49(2):181-187.
[10] Wen Z,Du X,Meng N,et al. Tussah silkmoth pupae improve anti-tumor properties of Cordyceps militaris(L.)Link by increasing the levels of major metabolite cordycepin[J]. Rsc Adv,2019,9(10):5480-5491.
[11] Tang J P,Liu Y T,Zhu L. Optimization of fermentation conditions and purification of cordycepin from Cordyceps militaris[J]. Prep Biochem Biotechnol,2014,44(1):90-106.
[12] Tang J P,Qian Z Q,Zhu L. Two-step shake-static fermentation to enhance cordycepin production by Cordyceps militaris[J]. Chem Eng T,2015,46:19-24.
[13] Sari N,Suparmin A,Kato T,et al. Improved cordycepin production in a liquid surface culture of Cordyceps militaris isolated from wild strain[J]. Biotechnol Bioprocess Eng,2016,21(5):595-600.
[14] Liu H,Zhao S,Jin Y,et al. Production of fumaric acid by immobilized Rhizopus arrhizus RH 7-13-9# on loofah fiber in a stirred-tank reactor[J]. Bioresour Technol,2017,244:929-933.
[15] Nuanpeng S,Thanonkeo S,Klanrit P,et al. Ethanol production from sweet sorghum by Saccharomyces cereuisiae DBKKUY-53 immobilized on alginate-loofah matrices[J]. Braz J Microbiol,2018,49:140-150.
[16] Shahri S Z,Vahabzadeh F,Mogharei A. Lactic acid production by loofah-immobilized Rhizopus oryzae through one-step fermentation process using starch substrate[J]. Bioproc Biosyst Eng,2020,43(2):333-345.
[17] 董姗姗. 丝瓜络吸油测试及组成结构分析[J]. 山东工业科技,2017(5):293-294. [18] Tang J,Qian Z,Wu H. Enhancing cordycepin production in liquid static cultivation of Cordyceps militaris by adding vegetable oils as the secondary carbon source[J]. Bioresour Technol,2018,268(22):60-67.
[19] Park J P,Kim S W,Hwang H J,et al. Stimulatory effect of plant oils and fatty acids on the exo-biopolymer production in Cordyceps militaris[J]. Enzyme Microb Technol,2002,31(3):250-255.
[20] 李玲. 改性丝瓜络复合内垫的抗菌整理及研制[D]. 西安:陕西科技大学,2013. [21] 汤佳鹏,柳依婷. 蛹虫草静置发酵产虫草素的优化[J]. 食品工业科技,2013,34(20):225-229 ,245.
[22] 张园园. 蛹虫草培养关键技术研究[D]. 杨凌:西北农林科技大学,2013. [23] 张雪超,王云. 蛹虫草栽培技术[J]. 吉林林业科技,2009,38(2):56-57. [24] Demir H,Tari C. Bioconversion of wheat bran for polygalacturonase production by Aspergillus sojae in tray type solid-state fermentation[J]. Int Biodeter Biodegr,2016,106:60-66.
[25] Luecke F-K,Fritz V,Tannhaeuser K,et al. Controlled fermentation of rapeseed presscake by Rhizopus,and its effect on some components with relevance to human nutrition[J]. Food Res Int,2019,120:726-732.
计量
- 文章访问数: 233
- HTML全文浏览量: 2
- PDF下载量: 24