• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

盐离子对大豆乳清混合蛋白乳液的稳定性及界面特性的影响

张小影, 齐宝坤, 孙禹凡, 韩璐, 钟明明, 李良, 李杨

张小影, 齐宝坤, 孙禹凡, 韩璐, 钟明明, 李良, 李杨. 盐离子对大豆乳清混合蛋白乳液的稳定性及界面特性的影响[J]. 食品工业科技, 2021, 42(6): 22-28. DOI: 10.13386/j.issn1002-0306.2020060098
引用本文: 张小影, 齐宝坤, 孙禹凡, 韩璐, 钟明明, 李良, 李杨. 盐离子对大豆乳清混合蛋白乳液的稳定性及界面特性的影响[J]. 食品工业科技, 2021, 42(6): 22-28. DOI: 10.13386/j.issn1002-0306.2020060098
ZHANG Xiaoying, QI Baokun, SUN Yufan, HAN Lu, ZHONG Mingming, LI Liang, LI Yang. Effect of Salt Ion on the Stability and Interfacial Adsorption Characteristics of Soybean-Whey Mixed Protein Emulsion[J]. Science and Technology of Food Industry, 2021, 42(6): 22-28. DOI: 10.13386/j.issn1002-0306.2020060098
Citation: ZHANG Xiaoying, QI Baokun, SUN Yufan, HAN Lu, ZHONG Mingming, LI Liang, LI Yang. Effect of Salt Ion on the Stability and Interfacial Adsorption Characteristics of Soybean-Whey Mixed Protein Emulsion[J]. Science and Technology of Food Industry, 2021, 42(6): 22-28. DOI: 10.13386/j.issn1002-0306.2020060098

盐离子对大豆乳清混合蛋白乳液的稳定性及界面特性的影响

基金项目: 

黑龙江省自然基金项目(LH2019C032);国家自然科学基金项目(31801579)。

详细信息
    作者简介:

    张小影(1995-),女,硕士研究生,主要从事粮食、油脂及植物蛋白工程方面的研究,E-mail:zxy18846759560@163.com。

    通讯作者:

    李杨(1981-),男,博士,教授,主要从事粮食、油脂及植物蛋白工程方面的研究,E-mail:yangli@neau.edu.cn。

  • 中图分类号: TS214.2

Effect of Salt Ion on the Stability and Interfacial Adsorption Characteristics of Soybean-Whey Mixed Protein Emulsion

  • 摘要: 采用大豆分离蛋白-乳清分离蛋白(SPI-WPI)作为乳化剂形成水相,加入大豆油作为油相,制备O/W乳液,通过粒径、Zeta电位、乳液稳定性系数、激光共聚焦显微镜、界面蛋白吸附量、界面压力及界面膨胀流变等指标探究不同盐离子浓度(0~0.5 mol/L NaCl)对混合蛋白界面特性及乳液稳定性的影响。结果表明:盐离子会使混合蛋白乳液表面电位增加,且随着NaCl浓度的增加,乳液的体积平均粒径(D43)升高,乳液稳定系数降低,乳液稳定性降低。并且,盐离子浓度为0.05 mol/L时,乳液最为稳定。此外,盐离子会使SPI-WPI在油-水界面的相互作用较弱,从而导致SPI-WPI溶液的界面压力值增大,在油-水界面的总模量(E)、弹性模量(Ed)、粘性模量(Ev)等降低,进而影响乳液的稳定性。这为食品产业生产较稳定的双蛋白乳液提供了理论依据。
    Abstract: In actual production, salt ions were unavoidably present in emulsion-based foods and beverages. Different ion concentrations(0~0.5 mol/L of NaCl) effect on interfacial characteristics of mixed proteins and emulsion stability by particle size, Zeta potential, emulsion stability coefficient, confocal laser scanning microscopy, interface protein adsorption, interface pressure, and interface expansion rheology. The results showed: Salt ions increased the surface potential of mixed proteins emulsion. With the increasing of ion concentration, the volume average particle diameter of the emulsion increased, the emulsion stability coefficient decreased, and the emulsion stability decreased. In addition, the emulsion with a higher salt ion concentration was more unstable than when the salt ion concentration was low. When the salt ion concentration was low(0.05~0.2 mol/L), the emulsion stability coefficient was high, indicating that the emulsion was more stable, especially at 0.05 mol/L, the highest stability coefficient was 97.73%±0.70%. In addition, salt ions weakened the interaction of SPI-WPI at the oil-water interface, resulting in an increasing in the interface pressure value of the SPI-WPI solution. The total modulus(E), elastic modulus(Ed), and viscous modulus(Ev) at the oil-water interface were reduced, which in turn affected the stability of the emulsion. This would provide a theoretical basis for the production of a more stable double-protein emulsion in the food industry.
  • [1]

    Oscar E P,Ceillio C S,Pilosof A M R,et al. Surface dilatational properties of whey protein and hydroxypropyl-methyl-cellulose mixed systems at the air-water interface[J]. Journal of Food Engineering,2009,94(3-4):274-282.

    [2]

    Zhu Y Q,Chen X,Mcclements D J,et al. pH-,ion-and temperature-dependent emulsion gels:Fabricated by addition of whey protein to gliadin-nanoparticle coated lipid droplets[J]. Food Hydrocolloids,2018,77:870-878.

    [3]

    Taha A,Ahmed E,Hu T,et al. Effects of different ionic strengths on the physicochemical properties of plant and animal proteins-stabilized emulsions fabricated using ultrasound emulsification[J]. Ultrasonics Sonochemistry,2019,58:104627.

    [4]

    Fernández-ávila C,Escriu R,Trujillo A J. Ultra-high pressure homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions[J]. Food Research International,2015,75:357-366.

    [5]

    Qi B K,Ding J,Wang Z J,et al. Deciphering the characteristics of soybean oleosome-associated protein in maintaining the stability of oleosomes as affected by pH[J]. Food Research International,2017,100:551-557.

    [6] 韩越. 混合蛋白体系的稳定性研究[D]. 哈尔滨:东北农业大学,2016.
    [7] 张梦霞. 罗非鱼蛋白-大豆蛋白混合体系乳化性的研究[D]. 湛江:广东海洋大学,2014.
    [8]

    Tsai M J,Weng Y M. Novel edible composite films fabricated with whey protein isolate and zein:Preparation and physicochemical property evaluation[J]. LWT,2019,101:567-574.

    [9]

    Adrian A A,Carrara C R,Cecilio C C,et al. Interfacial dynamic properties of whey protein concentrate/polysaccharide mixtures at neutral pH[J]. Food Hydrocolloids,2009,23(5):1253-1262.

    [10] 李良,张小影,朱建宇,等. 大豆-乳清混合蛋白对O/W乳液稳定性及流变性的影响[J]. 农业机械学报,2019,50(12):372-379.
    [11]

    Sriprablom J,Luangpituksa P,Wongkongkatep J,et al. Influence of pH and ionic strength on the physical and rheological properties and stability of whey protein stabilized o/w emulsions containing xanthan gum[J]. Journal of Food Engineering,2019,242:141-152.

    [12]

    Ravindran S,Williams M A K,Ward R L,et al. Understanding how the properties of whey protein stabilized emulsions depend on pH,ionic strength and calcium concentration,by mapping environmental conditions to zeta potential[J]. Food Hydrocolloids,2018,79:572-578.

    [13]

    Wang Ce,Chen Z H,Dong J R,et al. Interfacial rheological behaviors of amphiphilic sodium cholesteryl glycylglycine[J]. Soft Matter,2019,15(4):699-708.

    [14]

    Wooster T J,Augustin M A. Rheology of whey protein-dextran conjugate films at the air/water interface[J]. Food Hydrocolloids,2007,21(7):1072-1080.

    [15]

    Santiago L G,Maldonado-Valderrama J,Martín-Molina A,et al. Adsorption of soy protein isolate at air-water and oil-water interfaces[J]. Colloids & Surfaces A:Physicochemical and Engineering Aspects,2008,323(1-3):155-162.

    [16]

    Paraskevopoulou A,Amvrosiadou S,Biliaderis C G,et al. Mixed whey protein isolate-egg yolk or yolk plasma heat-set gels:Rheological and volatile compounds characterisation[J]. Food Research International,2014,62:492-499.

    [17]

    Dan A,Gochev G,Miller R. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces[J]. Journal of Colloid & Interface Science,2015,449:383-391.

    [18]

    Jourdain L S,Schmitt C,Leser M E,et al. Mixed layers of sodium caseinate dextran sulfate:Influence of order of addition to oil-water interface[J]. Langmuir,2009,25(17):10026-10037.

    [19]

    Urbonaite V,de Jongh,H H J,van der Linden E,et al. Origin of water loss from soy protein gels[J]. Journal of Agricultural and Food Chemistry,2014,62(30):7550-7558.

    [20] 赵丽. 大豆种皮多糖的乳化特性及机制研究[D]. 锦州:渤海大学,2016.
    [21]

    Li Y,Wu C L,Liu J,et al. Soy protein isolate-phosphatidylcholine nanoemulsions prepared using high-pressure homogenization[J]. Nanomaterials,2018,8(5):307.

    [22] 李慧娜. 大豆分离蛋白和浓缩蛋白乳液稳定性的比较及改性研究[D]. 郑州:河南工业大学,2018.
    [23]

    Chen W P,Liang G J,Li X,et al. Impact of soy proteins,hydrolysates and monoglycerides at the oil/water interface in emulsions on interfacial properties and emulsion stability[J]. Colloids and Surfaces B:Biointerfaces,2019,177:550-558.

    [24]

    Wang S N,Yang J J,Shao G Q,et al. Dilatational rheological and nuclear magnetic resonance characterization of oil-water interface:Impact of pH on interaction of soy protein isolated and soy hull polysaccharides[J]. Food Hydrocolloids,2020,99,105366.

    [25]

    Xiong W F,Ren C,Tian M,et al. Emulsion stability and dilatational viscoelasticity of ovalbumin/chitosan complexes at the oil-in-water interface[J]. Food Chemistry,2018,252:181-188.

    [26]

    Wan Z L,Wang L Y,Wang J M,et al. Synergistic interfacial properties of soy protein-stevioside mixtures:Relationship to emulsion stability[J]. Food Hydrocolloids,2014,39:127-135.

    [27]

    Laplante S,Turgeon S L,Paquin P. Effect of pH,ionic strength,and composition on emulsion stabilising properties of chitosan in a model system containing whey protein isolate[J]. Food Hydrocolloids,2005,19(4):721-729.

    [28]

    Zhu Y Q,McClements D J,Zhou W,et al. Influence of ionic strength and thermal pretreatment on the freeze-thaw stability of pickering emulsion gels[J]. Food Chemistry,2020,303:125401.

    [29]

    Cai X R,Du X F,Zhu G L,et al. Induction effect of NaCl on the formation and stability of emulsions stabilized by carboxymethyl starch/xanthan gum combinations[J]. Food Hydrocolloids,2020,105:105776.

    [30] 李宛蓉,刘佩,余静怡,等. 乳清分离蛋白与单宁酸相互作用提高稻米油Pickering乳液的稳定性[J/OL].食品科学:1-12[2020-05-11

    ].http://202.118.166.233:9006/kcms/detail/11.2206.TS.20191212.1344.070.html.

    [31]

    Khalid N,Shu G F,Holland B J,et al. Formulation and characterization of O/W nanoemulsions encapsulating high concentration of astaxanthin[J]. Food Research International,2017,102:364-371.

    [32]

    Dickinson E. Mixed biopolymers at interfaces:Competitive adsorption and multilayer structures[J]. Food Hydrocolloids,2011,25(8):1966-1983.

    [33]

    Perez A A,Sánchez C C,Rodríguez Patino J M,et al. Surface adsorption behaviour of milk whey protein and pectin mixtures under conditions of air-water interface saturation[J]. Colloids Surfaces B:Biointerfaces,2011,85(2):306-315.

    [34] 陈硕,唐传核. 不同比例球蛋白组成对大豆蛋白溶液乳化性与界面特性的影响[J]. 现代食品科技,2016,32(9):62-68.
    [35]

    Wang R,Xu P C,Chen Z X,et al. Complexation of rice proteins and whey protein isolates by structural interactions to prepare soluble protein composites[J]. LWT,2019,101:207-213.

    [36]

    Wang M P,Chen X W,Guo J,et al. Stabilization of foam and emulsion by subcritical water-treated soy protein:Effect of aggregation state[J]. Food Hydrocolloids,2019,87:619-628.

    [37]

    Lucassen-Reynders E H,Lucassen J,Garrett P R,et al. Dynamic surface measurements as a tool to obtain equation-of-state data for soluble monolayers[M]//Monolayers. Washington,D. C.:American Chemical Society,1975:272-285.

计量
  • 文章访问数:  507
  • HTML全文浏览量:  34
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-08
  • 网络出版日期:  2021-03-15
  • 刊出日期:  2021-03-14

目录

    /

    返回文章
    返回
    x 关闭 永久关闭