• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

琼脂对Komagataeibacter xylinus自发变异的控制

王志国, 钟春燕, 张伟敏

王志国, 钟春燕, 张伟敏. 琼脂对Komagataeibacter xylinus自发变异的控制[J]. 食品工业科技, 2021, 42(4): 103-107,201. DOI: 10.13386/j.issn1002-0306.2020050275
引用本文: 王志国, 钟春燕, 张伟敏. 琼脂对Komagataeibacter xylinus自发变异的控制[J]. 食品工业科技, 2021, 42(4): 103-107,201. DOI: 10.13386/j.issn1002-0306.2020050275
WANG Zhiguo, ZHONG Chunyan, ZHANG Weimin. Control of Spontaneous Mutation of Komagataeibacter xylinus by Agar[J]. Science and Technology of Food Industry, 2021, 42(4): 103-107,201. DOI: 10.13386/j.issn1002-0306.2020050275
Citation: WANG Zhiguo, ZHONG Chunyan, ZHANG Weimin. Control of Spontaneous Mutation of Komagataeibacter xylinus by Agar[J]. Science and Technology of Food Industry, 2021, 42(4): 103-107,201. DOI: 10.13386/j.issn1002-0306.2020050275

琼脂对Komagataeibacter xylinus自发变异的控制

基金项目: 

海南省重大科技创新项目(ZDKJ 2019014)。

详细信息
    作者简介:

    王志国(1974-),男,博士,副教授,研究方向:食品微生物,E-mail:wangzhiguo74@163.com。

    通讯作者:

    张伟敏(1979-),男,博士,教授,研究方向:食品安全和天然产物,E-mail:381936771@qq.com。

  • 中图分类号: TS201.1

Control of Spontaneous Mutation of Komagataeibacter xylinus by Agar

  • 摘要: 本文研究Komagataeibacter xylinus静态及动态培养中琼脂对其自发变异和细菌纤维素(Bacterial Cellulose,BC)产量及结构的影响。采用涂布法对变异菌率,称重法对纤维素产量以及傅里叶变换红外光谱法和粘度法分别对BC的结晶度和聚合度进行分析,并采用分光光度法对纤维素酶活力测定。结果显示,静态和动态培养中皆出现变异菌,BC产量分别为0.16和0.09 g/L;而静态培养中添加0.05%琼脂和动态培养中添加0.10%琼脂的培养液中没有分离到变异菌株,BC产量分别提高至0.38和0.34 g/L。0.05%琼脂静态培养液连续转接九次过程中没有分离到变异菌株,0.10%琼脂动态培养液连续转接至第二次时,出现变异菌株。以未添加琼脂静态培养为对照,静态培养中,0.05%琼脂使BC的聚合度和结晶度分别下降4.0%和12.9%,动态培养中,0.10%琼脂使BC的结晶度下降了51.2%。尽管纤维素酶活力不受培养方式和琼脂的影响,但动态条件下,因琼脂显著下降了BC的结晶度,纤维素酶易水解BC,因此,BC的聚合度下降了42.2%。
    Abstract: This paper studied the effects of agar on spontaneous mutation of Komagataeibacter xylinus,bacterial cellulose(BC)productivity and BC structure in static and shaken-flask culture. The rate of mutation was measured by plate counting. BC productivity,crystallinity,and polymerization of degree were determined by weighing method,Fourier transform infrared spectroscopy(FTIR)and viscosity method,respectively. Meanwhile,the cellulase activity was assayed by spectrophotometry. The results showed that there were mutants in both static and shaken cultures and the yield of BC was 0.16 and 0.09 g/L,respectively. No mutant strain was found in the static culture with 0.05% agar and in the shaken culture with 0.10% agar. BC yield increased to 0.38 and 0.34 g/L,respectively. No mutants were detected in nine times of transfer passages of the static culture with 0.05% agar. However,the mutants appeared in the second transfer passage of shaken culture with 0.10% agar. Compared with that of BC in the static culture,0.05% agar added into static culture decreased the degree of polymerization and crystallinity of BC by 4.0% and 12.9%,respectively.0.10% agar in shaken culture decreased the crystallinity of BC by 51.2%.Although the activity of cellulase was not affected by culture method and agar,BC with lower crystallinity in the shaken culture with 0.10% agar was more hydrolyzed by the cellulase,resulting that the degree of polymerization of BC decreased by 42.2%.
  • [1]

    Kallayanee Naloka,Kazunobu Matsushita,Gunjana Theeragool. Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU12[J]. International Journal of Biological Macromolecules,2020,150:1113-1120.

    [2]

    Yukari Numata,Hiroyuki Kono,Akane Mori,et al. Structural and rheological characterization of bacterial cellulose gels obtained from Gluconacetobacter genus[J]. Food Hydrocolloids,2019,92:233-239.

    [3]

    Corral M L,Cerrutti P,Vázquez A,et al. Bacterial nanocellulose as a potential additive for wheat bread[J]. Food Hydrocolloids,2017,67:189-196.

    [4]

    Dourado F,Gama M,Rodrigues A C. A Review on the toxicology and dietetic role of bacterial cellulose[J]. Toxicology Report,2017,4:543-553.

    [5]

    Padrão J,Gonçalves S,Silva J P,et al. Bacterial cellulose-lactoferrin as an antimicrobial edible packaging[J]. Food Hydrocolloids,2016,58:126-140.

    [6]

    Wang J,Tavakoli J,Tang Y. Bacterial cellulose production,properties and applications with different culture methods-A review[J]. Carbohydrate Polymers,2019,219(1):63-76.

    [7]

    Magdalena Kołaczkowska,Piotr Siondalski,Maciej Michał Kowalik,et al. Assessment of the usefulness of bacterial cellulose produced by Gluconacetobacter xylinus E25 as a new biological implant[J]. Materials Science and Engineering:C,2019,97:302-312.

    [8]

    Paria Sadat Lavasani,Elahe Motevaseli,Nafiseh Sadat Sanikhani,et al. Komagataeibacter xylinus as a novel probiotic candidate with high glucose conversion rate properties[J]. Heliyon,2019,5(4):1-10.

    [9]

    Nadia Halib,Ishak Ahmad,Mario Grassi,et al. The remarkable three-dimensional network structure of bacterial cellulose for tissue engineering applications[J]. International Journal of Pharmaceutics,2019,566:631-640.

    [10]

    Vu Tuan Nguyen,Bernadine Flanagan,Deirdre Mikkelsen,et al. Spontaneous mutation results in lower cellulose production by a Gluconacetobacter xylinus strain from Kombucha[J]. Carbohydrate Polymers,2010,80(2):337-343.

    [11]

    Dong Hoon Hur,Hong-Soon Rhee,Jae Hyung Lee,et al. Enhanced production of cellulose in Komagataeibacter xylinus by preventing insertion of IS element into cellulose synthesis gene[J].Biochemical Engineering Journal,2020,156:1-10.

    [12]

    Pornchanok Taweecheep,Kallayanee Naloka,Minenosuke Matsutani,et al. Superfine bacterial nanocellulose produced by reverse mutations in the bcsC gene during adaptive breeding of Komagataeibacter oboediens[J]. Carbohydrate Polymers,2019,226:1-8.

    [13] 吴谦,谢必祺,刘耀谦,等. 木葡糖醋杆菌静置培养中的衰退现象初探[J]. 中国酿造,2013,254(5):19-21.
    [14]

    Wang Z G,Xiang D,Wang X B,et al. Preparation of an inoculum of Gluconacetobacter xylinus without mutants in shaken culture[J]. Journal of Applied Microbiology,2016,121:713-720.

    [15] 李少慧. 细菌纤维素生物合成的调控及其红曲霉菌复合发酵的研究[D]. 武汉:华中科技大学,2012.
    [16]

    Chao Yaping,Makoto Mitarai,Yasushi Sugano,et al. Effect of addition of water-soluble polysaccharides on bacterial cellulose production in a 50-L airlift reactor[J]. Biotechnology Progress,2001,17(4):781-785.

    [17]

    Kuan-Chen Cheng,Jeffrey M,Catchmark,et al. Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property[J]. Cellulose,2009,16(6):1033-1045.

    [18]

    Erika F Souza,Maraysa R Furtado,Carlos W P Carvalho,et al.Production and characterization of Gluconacetobacter xylinus bacterial cellulose using cashew apple juice and soybean molasses[J]. International Journal of Biological Macromolecules,2020,146:285-289.

    [19] 沈新元. 高分子材料与工程专业实验教程[M]. 第二版. 北京:中国纺织工业出版社,2010:62.
    [20] 胡英,李喆,柯勤飞,等. 天然纤维素结晶结构的表征[J].合成纤维工业,2018,41(3):7881.
    [21] 颜志勇,王华平,陈仕艳,等. 细菌纤维素的晶体结构[J].材料导报,2008,22(8):127-130.
    [22]

    Karol Fijałkowski,Anna ywicka,Radosław Drozd,et al. Effect of Gluconacetobacter xylinus cultivation conditions on the selected properties of bacterial cellulose[J]. Polish Journal of Chemical Technology,2016,18(4):117-123.

    [23]

    Czaja W,Romanovicz D,Brown RM. Structural investigations of microbial cellulose produced in stationary and agitated culture[J]. Cellulose,2004,11(3):403-411.

    [24]

    Kenji Tajima,Katsutoshi Nakajima,Hitomi Yamashita,et al. Cloning and sequencing of the beta-glucosidase gene from Acetobacter xylinum ATCC 23769[J]. DNA Research,2001,8(6):263-269.

    [25]

    Coucheron D H. An Acetobacter xylinum insertion sequence element associated with inactivation of cellulose production[J]. Journal of Bacteriology,1991,173(18):5723-5731.

    [26]

    Cook K E,Colvin J R. Evidence for a beneficial influence of cellulose production on growth of Acetobacter xylinum in liquid medium[J]. Current Microbiology,1980,3:203-205.

    [27]

    Valla S,Kjosbakken J. Cellulose-negative mutants of Acetobacter xylinum[J]. Journal of General Microbiology,1982,28:1401-1408.

    [28]

    Jung J Y,Park J K,Chang H N. Bacterial cellulose production by Gluconacetobacter hansenii in an agitated culture without living non-cellulose producing cells[J]. Enzyme and Microbial Technology,2005,37(3):347-354.

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-24
  • 网络出版日期:  2021-03-01
  • 刊出日期:  2021-02-14

目录

    /

    返回文章
    返回
    x 关闭 永久关闭