• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

油茶壳木质素理化性质及表征

李晗, 杨威岭, 杨宗玲, 范方宇, 王昌命

李晗, 杨威岭, 杨宗玲, 范方宇, 王昌命. 油茶壳木质素理化性质及表征[J]. 食品工业科技, 2021, 42(4): 33-38. DOI: 10.13386/j.issn1002-0306.2020050136
引用本文: 李晗, 杨威岭, 杨宗玲, 范方宇, 王昌命. 油茶壳木质素理化性质及表征[J]. 食品工业科技, 2021, 42(4): 33-38. DOI: 10.13386/j.issn1002-0306.2020050136
LI Han, YANG Weiling, YANG Zongling, FAN Fangyu, WANG Changming. Physicochemical Properties and Structural Characterization of Lignin from Camellia oleifera Shell[J]. Science and Technology of Food Industry, 2021, 42(4): 33-38. DOI: 10.13386/j.issn1002-0306.2020050136
Citation: LI Han, YANG Weiling, YANG Zongling, FAN Fangyu, WANG Changming. Physicochemical Properties and Structural Characterization of Lignin from Camellia oleifera Shell[J]. Science and Technology of Food Industry, 2021, 42(4): 33-38. DOI: 10.13386/j.issn1002-0306.2020050136

油茶壳木质素理化性质及表征

基金项目: 

云南省农业联合面上项目(2018FG001-060);云南省"万人计划"青年拔尖人才专项资助(YNWR-QNBJ-2018-046)。

详细信息
    作者简介:

    李晗(1995-),女,硕士研究生,研究方向:食品化学,E-mail:lihan@swfu.edu.cn。

    通讯作者:

    范方宇(1979-),男,博士,教授,研究方向:农林产品加工,E-mail:ffy118@163.com。

  • 中图分类号: TS201.1

Physicochemical Properties and Structural Characterization of Lignin from Camellia oleifera Shell

  • 摘要: 为充分利用油茶壳资源,研究分别采用醋酸法和碱法提取油茶壳木质素,并对其基本成分、理化性质和结构表征进行了分析。结果表明:提取的醋酸木质素(91.87%)纯度略微低于碱木质素(93.37%);且醋酸木质素中[C]和固定碳含量较高。两种木质素抗氧化力远大于油茶壳粗膳食纤维;与碱木质素相比,醋酸木质素持水力、溶胀力分别增加了59.49%、55.36%,饱和与不饱和脂肪结合力分别增加了5.06%、2.24%,DPPH自由基清除力增加了10.50%,吸湿率降低了28.14%。紫外和红外光谱谱图可知,醋酸木质素和碱木质素主要由愈创木基和紫丁香基组成;醋酸木质素中愈创木基含量更高,碱木质素中紫丁香基含量更高。热重分析可知,醋酸木质素热稳定性高于碱木质素,更适于高温耐热材料的制备。
    Abstract: In order to make full use of the resources of Camellia oleifera shell,this research using Camellia oleifera shell as raw material,the lignin was extracted from Camellia oleifera shell by acetic acid method and alkaline method,respectively. The basic components,physicochemical properties and structural characterization of acetic acid lignin and alkaline lignin were analyzed. The results showed that acetic acid lignin had a lower purity(91.87%)and higher purity of alkaline lignin(93.37%),and the content of[C]and fixed carbon in acetic acid lignin was higher. Antioxidant activity investigation showed that the DPPH radical scavenging index of the extracted acetic acid lignin and alkaline lignin was higher than that of crude dietary fiber. Compared with alkaline lignin,the water holding capacity and swelling capacity of acetic acid lignin were increased by 59.49% and 55.36%,respectively. The binding capacity of saturated fat and unsaturated fat were increased by 5.06% and 2.24%,respectively. The DPPH radical scavenging activity was increased by 10.50%. And the moisture absorption was decreased by 28.14%.Meanwhile,the UV-visible spectra(UV)and infrared spectra(IR)analyses showed that the acetic acid lignin and alkaline lignin are mainly composed of guaiacyl and syringyl,and the guaiacyl content in acetic acid lignin was higher,while the syringyl content in alkaline lignin was higher. Thermogravimetric analysis showed that the thermal stability of acetic acid lignin was higher than that of alkaline lignin,and was more suitable for the preparation of high temperature and heat resistant materials.
  • [1]

    Tan M J,Luo L,Wu Z Q,et al. Pelletization of Camellia oleifera Abel.shell after storage:Energy consumption and pellet properties[J]. Fuel Processing Technology,2020,201:106337.

    [2] 淦永鉴,李旭,杨莉琳,等.油茶籽壳提取物抗氧化及抗癌活性研究[J]. 食品工业科技,2015,36(8):171-174

    ,182.

    [3]

    Zhang L X,He Y F,Zhu Y J,et al. Camellia oleifera shell as an alternative feedstock for furfural production using a high surface acidity solid acid catalyst[J]. Bioresource Technology,2018,249:536-541.

    [4]

    Sun Y C,Wang M,Sun R C.Toward an understanding of inhomogeneities in structure of lignin in green solvents biorefinery.part 1:Fractionation and characterization of lignin[J]. ACS Sustainable Chemistry & Engineering,2015,3(10):2443-2451.

    [5] 龚卫华,胡强,向卓亚,等.麻竹笋笋壳醋酸木质素结构特性及抗氧化性[J]. 精细化工,2017,34(12):1417-1422.
    [6] 崔晓芳,李伟阳,魏婷婷,等.微波辅助提取油茶果壳木质素工艺优化[J]. 食品科学,2011,32(8):98-102.
    [7]

    Xie F,Gong S X,Zhang W,et al. Potential of lignin from Canna edulis Ker residue in the inhibition of α-d-glucosidase:Kinetics and interaction mechanism merging with docking simulation[J]. International Journal of Biological Macromolecules,2017,95:592-602.

    [8] 龚卫华,马玥,吕霞,等.葵花籽壳木质素的结构分析及抗氧化活性[J]. 食品科学,2017,38(7):23-28.
    [9] 张坤.玉米秸秆木质素提取表征及应用研究[D].长春:长春工业大学,2015:4-22.
    [10]

    Gong W H,Xiang Z Y,Ye F Y,et al. Composition and structure of an antioxidant acetic acid lignin isolated from shoot shell of bamboo(Dendrocalamus latiforus)[J]. Industrial Crops and Products,2016,91:340-349.

    [11]

    Rodríguez-Gutiérrez G,Rubio-Senent F,Lama-Muñoz A,et al. Properties of lignin,cellulose,and hemicelluloses isolated from olive cake and olive stones:Binding of water,oil,bile acids,and glucose[J]. Journal of Agricultural and Food Chemistry,2014,62(36):8973-8981.

    [12] 陈利梅,李德茂,李燕.不同干燥方式对小麦麸皮膳食纤维理化性质的影响研究[J]. 食品工业科技,2010,31(4):132-133

    ,139.

    [13] 梁国治.木质素加氢液化溶剂效应研究[D].淮南:安徽理工大学,2007:19-25.
    [14] 谭惠珊.碱法制浆黑液中木质素的提取与纯化[D].天津:天津科技大学,2017:25-41.
    [15] 李楠,周婷婷,耿莉莉,等.棉杆有机溶剂型木质素的结构表征与分析[J]. 广东化工,2015,42(15):45-46

    ,53.

    [16] 秦丽元,张世慧,高忠志,等.生物炭与木质素混合成型及其燃烧特性研究[J]. 农业机械学报,2017,48(4):276-283.
    [17]

    Cheikh Rouhou M,Abdelmoumen S,Thomas S,et al. Use of green chemistry methods in the extraction of dietary fibers from cactus rackets(Opuntia ficus indica):Structural and microstructural studies[J]. International Journal of Biological Macromolecules,2018,116:901-910.

    [18] 龚卫华,向卓亚,叶发银,等.麻竹笋笋壳中木质素的理化特性[J]. 食品科学,2017,38(9):59-65.
    [19]

    Luo X L,Wang Q,Fang D Y,et al. Modification of insoluble dietary fibers from bamboo shoot shell:Structural characterization and functional properties[J]. International Journal of Biological Macromolecules,2018,120:1461-1467.

    [20]

    Zhu Y,Chu J X,Lu Z X,et al. Physicochemical and functional properties of dietary fiber from foxtail millet(Setaria italic)bran[J]. Journal of Cereal Science,2018,79:456-461.

    [21]

    Li Z L,Ge Y Y.Antioxidant activities of lignin extracted from sugarcane bagasse via different chemical procedures[J]. International Journal of Biological Macromolecules,2012,51(5):1116-1120.

    [22]

    Zhao X B,Wen J L,Chen H M,et al. The fate of lignin during atmospheric acetic acid pretreatment of sugarcane bagasse and the impacts on cellulose enzymatic hydrolyzability for bioethanol production[J]. Renewable Energy,2018,128:200-209.

    [23]

    Jahan M S,Chowdhury D A N,Islam M K,et al. Characterization of lignin isolated from some nonwood available in Bangladesh[J]. Bioresource Technology,2007,98(2):465-469.

    [24] 付跃进,杨昇,王方骏,等.核桃壳木质素的结构研究[J].林业工程学报,2018,32(3):88-94.
    [25]

    Elsayed M,Abomohra A E F,Ai P,et al. Biorefining of rice straw by sequential fermentation and anaerobic digestion for bioethanol and/or biomethane production:Comparison of structural properties and energy output[J]. Bioresource Technology,2018,268:183-189.

    [26] 周静,沈葵忠,房桂干,等.响应面优化碱醇预处理麦草酶解效率及木质素组分分离[J]. 食品工业科技,2018,39(14):81-86.
    [27] 王则祥,李航,谢文銮,等.木质素基本结构、热解机理及特性研究进展[J]. 新能源进展,2020,8(1):6-14.
    [28] 陈磊,陈汉平,陆强,等.木质素结构及热解特性[J]. 化工学报,2014,65(9):3626-3633.
  • 期刊类型引用(5)

    1. 杨丹亚,蒋越华,莫良玉,黄理明,范稚莲. 油茶壳堆肥用量对土壤肥力及苦麦菜生长与品质的影响. 贵州农业科学. 2024(04): 47-55 . 百度学术
    2. 李锋,毛海立,徐平,曾承露. 乳酸类低共熔溶剂分离油茶果壳木质素及其特性分析. 精细化工. 2023(01): 109-116+168 . 百度学术
    3. 王璐馨,沈建福. 正交试验优化油茶壳中抑制酪氨酸酶活性成分的提取工艺. 粮食与油脂. 2023(07): 130-133 . 百度学术
    4. 李锋,李逸青,毛海立,黄德娜,曾承露. 低共熔溶剂分离油茶果壳木质素及其抗氧化活性和热解特性分析. 食品工业科技. 2022(24): 261-267 . 本站查看
    5. 夏美玲,王允圃,张淑梅,曾媛,刘玉环,RUAN Roger. 油茶壳综合利用研究进展. 生物质化学工程. 2021(06): 26-38 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  282
  • HTML全文浏览量:  17
  • PDF下载量:  14
  • 被引次数: 9
出版历程
  • 收稿日期:  2020-05-12
  • 网络出版日期:  2021-03-01
  • 刊出日期:  2021-02-14

目录

    /

    返回文章
    返回
    x 关闭 永久关闭