Effect of High-pressure Homogenization Combined with Chitosan Extraction on Structure and Function of Soy Protein in Whey Water
-
摘要: 本研究以大豆乳清水为原料,研究高压均质协同壳聚糖法对大豆乳清水中大豆蛋白回收的影响,并研究其对回收蛋白的结构及功能特性的影响。结果表明,当蛋白/多糖质量比为2:1时,与未高压均质处理相比,在高压均质压力不大于90 MPa条件下,高压均质协同壳聚糖处理使蛋白回收率显著增加(P<0.05),达到61.92%;另外,拉曼光谱和荧光光谱显示,在高压均质压力不大于90 MPa条件下,随着高压均质压力的逐渐升高,大豆分离蛋白的α-螺旋和β-折叠含量呈现降低趋势,无规卷曲含量呈现增加趋势,荧光强度和λmax呈现增加趋势,表明经高压均质后混合体系的微环境发生了改变;且回收蛋白的溶解性、乳化活性及乳化稳定性逐渐增加,浊度逐渐减少。当高压均质压力大于90 MPa时,随着高压均质压力的逐渐升高,蛋白质分子荧光强度和λmax降低,回收蛋白的溶解性、乳化活性及乳化稳定性的逐渐增加速率逐渐减少。该研究可为工业化生产大豆分离蛋白废水的处理和副产物资源化利用提供理论指导。Abstract: In this paper,soybean whey water was used as the raw material,which was treated by high-pressure homogenization synergistic chitosan interfacial recombination to efficiently recover residual soy protein. The effects of the technology on the structure and functional properties of the recovered protein were further studied. Results showed that,under the conditions as follows:The mass ratio of SPI-Chitosan mixture was 2:1,and high-pressure homogenization pressure was not higher than 90 MPa,the high-pressure homogenization synergistic chitosan treatment significantly(P<0.05)increased the protein recovery rate to 61.92%. Results of Raman spectroscopy showed that the contents of α-helix and β-sheet in soy protein isolate reduced,and the proportion of random coil content increased. The results of endogenous fluorescence spectrum showed that the fluorescence intensity and λmax of the recovered protein increased,which indicated that the microenvironment of the protein structure and protein tryptophan residues in the mixed system changed. With the increasing of homogenization pressure,the solubility,emulsifying activity and emulsion stability of the recovered protein increased gradually,but the turbidity of the recovered protein solution gradually decreased. When the high-pressure homogenization pressure was higher than 90 MPa,the fluorescence intensity and λmax of recovered protein decreased. This would provide theoretical guidance for the waster water treatment of industrial production of isolated soy protein,and by-product resource utilization.
-
[1] Wan Y L,Liu J Y,Guo S T.Effects of succinylation on the structure and thermal aggregation of soy protein isolate[J]. Food Chemistry,2018,245:542-550.
[2] Acosta-Domínguez L,Hernández-Sánchez H,Gutiérrez-López G F,et al. Modification of the soy protein isolate surface at nanometric scale and its effect on physicochemical properties[J]. Journal of Food Engineering,2016,168:105-112.
[3] 胡朝宇,李亚峰,刘鑫,等.大豆蛋白废水处理方法研究[J]. 辽宁化工,2009,38(9):626-628 ,631.
[4] 靳挺,沈科丞,施亚芳,等.高黏度壳聚糖回收鱼糜漂洗液中蛋白质的研究[J]. 中国食品学报,2019,19(11):165-169. )
[5] Huang G Q,Sun Y T,Xiao J X,et al. Complex coacervation of soybean protein isolate and chitosan[J]. Food Chemistry,2012,135(2):534-539.
[6] 刘秉涛,张焱,王海荣.壳聚糖对含蛋白废水的絮凝与回收[J]. 华北水利水电学院学报,2005,26(4):69-71. [7] Wang W,Li J S,Yan L J,et al. Effect of oxidization and chitosan on the surface activity of soy protein isolate[J]. Carbohydrate Polymers,2016,151:700-706.
[8] 谭慧,韩建春,张媛,等.高压均质对大豆分离蛋白-多糖混合体系功能特性的影响[J]. 食品工业科技,2015,36(22):92-96. [9] 李雨枫,薛思雯,衣晓坤,等.高压均质处理对不同浓度肌原纤维蛋白水悬液理化特性及蛋白结构的影响[J]. 食品工业科技,2019,40(21):1-6 ,12.
[10] Yang J Q,Liu G Y,Zeng H B,et al. Effects of high pressure homogenization on Faba bean protein aggregation in relation to solubility and interfacial properties[J]. Food Hydrocolloids,2018,83:275-286.
[11] 金虹. 马铃薯淀粉生产废液中蛋白质提取工艺的优化[J]. 湖北农业科学,2011,50(12):2516-2518. [12] Chang P G,Gupta R,Timilsena Y P,et al. Optimisation of the complex coacervation between canola protein isolate and chitosan[J]. Journal of Food Engineering,2016,191:58-66.
[13] 孔令知. 复凝聚法回收淀粉加工废水中蛋白质的研究[D]. 无锡:江南大学,2015. [14] 李杨,孙禹凡,赵城彬,等. 体外模拟消化过程中大豆分离蛋白拉曼光谱和荧光光谱分析[J]. 中国食品学报,2019,19(2):271-277. [15] 王瑞,李杨,王中江,等.体外模拟消化过程中大豆蛋白的荧光光谱分析及热处理的影响[J]. 食品工业科技,2016,37(6):128-132. [16] 王辰,江连洲.使用圆二色性光谱分析二级结构对大豆分离蛋白表面疏水性的影响[J]. 食品工业科技,2016,37(14):134-137. [17] 许琳霜,屈晓清,曾小凤,等.天然和热变性乳铁蛋白与α-乳白蛋白聚集体的超分子结构表征[J]. 食品工业科技,2020,41(15):15-20 ,28.
[18] 李灵诚,李兵兵,夏宁,等.水热糖基化大米蛋白质的结构以及溶解性研究[J]. 食品工业科技,2020,41(18):38-44. [19] Tang S,Hettiarachchy N S,Horax R,et al. Physicochemical properties and functionality of rice bran protein hydrolyzate prepared from heat-stabilized defatted rice bran with the aid of enzymes[J]. Journal of Food Science,2003,68(1):152-157.
[20] 鹿旭,华欲飞,陈业明,等.加工条件对核桃蛋白质溶出率的影响[J]. 安徽农业科学,2018,46(13):155-159. [21] de Kruif C G,Weinbreck F,de Vries R.Complex coacervation of proteins and anionic polysaccharides[J]. Current Opinion in Colloid & Interface Science,2004,9(5):340-349.
[22] 杨盛楠,翟爱华.高压均质对大豆分离蛋白功能性质的影响[J]. 中国酿造,2014,33(12):89-93. [23] Li L,Zhou Y,Teng F,et al. Application of ultrasound treatment for modulating the structural,functional and rheological properties of black bean protein isolates[J]. International Journal of Food Science & Technology,2020,55(4):1637-1647.
[24] 王中江,江连洲.大豆分离蛋白在不同pH下的拉曼光谱分析[J]. 食品工业科技,2012,33(11):63-66 ,70.
[25] 王喜波,徐晔晔,于洁,等.高压均质对大豆蛋白柔性和乳化性的影响及相关性分析[J]. 农业机械学报,2018,49(6):362-367. [26] 沈兰,王昌盛,唐传核.高压微射流处理对大豆分离蛋白构象及功能特性的影响[J]. 食品科学,2012,33(3):72-76. [27] 涂宗财汪菁琴阮榕生李敏.超高压均质对大豆分离蛋白功能特性的影响[J]. 食品工业科技,2006,27(1):66-67. [28] 齐宝坤,赵城彬,杨树昌,等.绿豆分离蛋白-葡聚糖接枝反应及产物抗氧化性研究[J]. 中国食品学报,2018,18(12):74-80. [29] Dong X H,Zhao M M,Yang B,et al. Effect of high-pressure homogenization on the functional property of peanut protein[J]. Journal of Food Process Engineering,2011,34(6):2191-2204.
[30] Puppo M C,Speroni F,Chapleau N,et al. Effect of high-pressure treatment on emulsifying properties of soybean proteins[J]. Food Hydrocolloids,2005,19(2):289-296.
[31] 谭慧. 高压处理对大豆分离蛋白-多糖体系功能特性及结构影响研究[D]. 哈尔滨:东北农业大学,2015. -
期刊类型引用(3)
1. 于寒松,陈健,蔡蕾,付洪玲,原畅蔚,徐源浩,吕博. 大豆黄浆水的无害化处理及再利用研究进展. 大豆科学. 2023(04): 473-480 . 百度学术
2. 孙冰玉,李志敏,刘琳琳,吕铭守,朱秀清,王欢,邵志远. 高压均质技术对大豆蛋白结构和发酵特性影响研究进展. 食品工业科技. 2022(13): 425-433 . 本站查看
3. 肖志刚,王依凡,王可心,段庆松,朱旻鹏,霍金杰,江睿生,李航,何东,高育哲. 高压均质-冷冻干燥技术制备大豆分离蛋白微粒及其功能特性. 农业工程学报. 2021(13): 306-313 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 279
- HTML全文浏览量: 33
- PDF下载量: 20
- 被引次数: 3