• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

表面增强拉曼光谱技术在真菌毒素检测中的应用研究进展

陈瑞鹏, 孙云凤, 霍冰洋, 赵旭东, 贾雪霞, 李双, 梁俊, 高志贤

陈瑞鹏, 孙云凤, 霍冰洋, 赵旭东, 贾雪霞, 李双, 梁俊, 高志贤. 表面增强拉曼光谱技术在真菌毒素检测中的应用研究进展[J]. 食品工业科技, 2021, 42(5): 342-348,356. DOI: 10.13386/j.issn1002-0306.2020050032
引用本文: 陈瑞鹏, 孙云凤, 霍冰洋, 赵旭东, 贾雪霞, 李双, 梁俊, 高志贤. 表面增强拉曼光谱技术在真菌毒素检测中的应用研究进展[J]. 食品工业科技, 2021, 42(5): 342-348,356. DOI: 10.13386/j.issn1002-0306.2020050032
CHEN Ruipeng, SUN Yunfeng, HUO Bingyang, ZHAO Xudong, JIA Xuexia, LI Shuang, LIANG Jun, GAO Zhixian. Research Progress of Surface Enhanced Raman Spectroscopy in the Detection of Mycotoxins[J]. Science and Technology of Food Industry, 2021, 42(5): 342-348,356. DOI: 10.13386/j.issn1002-0306.2020050032
Citation: CHEN Ruipeng, SUN Yunfeng, HUO Bingyang, ZHAO Xudong, JIA Xuexia, LI Shuang, LIANG Jun, GAO Zhixian. Research Progress of Surface Enhanced Raman Spectroscopy in the Detection of Mycotoxins[J]. Science and Technology of Food Industry, 2021, 42(5): 342-348,356. DOI: 10.13386/j.issn1002-0306.2020050032

表面增强拉曼光谱技术在真菌毒素检测中的应用研究进展

基金项目: 

国家重点研发计划(2018YFC1603500);广东省重点领域研发计划项目(2019B020211001)。

详细信息
    作者简介:

    陈瑞鹏(1993-),男,博士研究生,研究方向:食品中真菌毒素的快速检测,E-mail:chenruipeng2016@163.com。

    通讯作者:

    梁俊(1978-),男,博士,教授,研究方向:食品中毒素快速检测,E-mail:jliang1118@yeah.net

    高志贤(1966-),男,博士,研究员,研究方向:食品安全快速检测,E-mail:gaozhx@163.com。

  • 中图分类号: TS206.4

Research Progress of Surface Enhanced Raman Spectroscopy in the Detection of Mycotoxins

  • 摘要: 表面增强拉曼光谱(surface enhanced raman spectroscopy,SERS)是一种新型的快速检测技术,能通过增强基底灵敏探测化合物的分子指纹信息,从而清楚解析其特征化学结构,具有样本前处理简单、检测速度快、灵敏度高、光谱信息丰富、易操作等优点,在食源性真菌毒素的检测领域有很大的应用价值。本文介绍了表面增强拉曼光谱技术的发展历程、增强机理、基底的分类以及检测模式,综述了近5年在食品中真菌毒素快速检测方面的最新研究进展,并提出了亟待解决的问题和发展趋势,旨在为今后SERS技术的研究和开发提供帮助。
    Abstract: Surface-enhanced Raman spectroscopy(SERS)is a new type of rapid detection technology. By enhancing the substrate,it can sensitively detect the molecular fingerprint information of a compound,so as to clearly resolve its characteristic chemical structure. It has the advantages of simple sample preparation,fast detection speed,high sensitivity,rich spectral information and easy operation. It has great application value in the field of food-borne mycotoxin detection. This article introduces the development history,enhancement mechanism,substrate classification and detection mode of surface-enhanced Raman spectroscopy,it summarizes the latest research progress in the rapid detection of mycotoxins in food in the past 5 years,and puts forward the problems and development trends that need to be solved urgently,aiming to provide assistance for the research and development of SERS technology in the future.
  • [1]

    Al-Jaal B,Salama S,Al-Qasmi N,et al. Mycotoxin contamination of food and feed in the Gulf Cooperation Council countries and its detection[J]. Toxicon,2019,171(1):43-50.

    [2]

    Neme K,Mohammed A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies[J]. A review[J]. Food Control,2017,78(1):412-425.

    [3]

    Vila-Donat P,Marín S,Sanchis V,et al. A review of the mycotoxin adsorbing agents,with an emphasis on their multi-binding capacity,for animal feed decontamination[J]. Food and Chemical Toxicology,2018,114(1):246-259.

    [4] 朱雪蕊. 基于表面增强拉曼光谱光子晶体微球生物芯片真菌毒素多元检测[D].南京:南京师范大学,2019.
    [5]

    Wei T,Ren P,Huang L,et al. Simultaneous detection of aflatoxin B1,ochratoxin A,zearalenone and deoxynivalenol in corn and wheat using surface plasmon resonance[J]. Food Chemistry,2019,300(1):125176.

    [6]

    Park B J,Takatori K,Sugita-Konishi Y,et al. Degradation of mycotoxins using microwave-induced argon plasma at atmospheric pressure[J]. Surface and Coatings Technology,2007,201(9):5733-5737.

    [7]

    Juan-García A,Carbone S,Ben-Mahmoud M,et al. Beauvericin and ochratoxin A mycotoxins individually and combined in HepG2 cells alter lipid peroxidation,levels of reactive oxygen species and glutathione[J]. Food and Chemical Toxicology,2020,139(1):111247.

    [8]

    Ieko T,Inoue S,Inomata Y,et al. Glucuronidation as a metabolic barrier against zearalenone in rat everted intestine[J]. Journal of Veterinary Medical Science,2020,82(2):153-161.

    [9]

    Rahman H U,Yue X,Yu Q,et al. Current PCR-based methods for the detection of mycotoxigenic fungi in complex food and feed matrices[J]. World Mycotoxin Journal,2020,13(2):139-150.

    [10]

    Peles F,Sipos P,Gyori Z,et al. Adverse effects,transformation and channeling of aflatoxins into food raw materials in livestock[J]. Frontiers in Microbiology,2019,10(1):2861-2869.

    [11]

    Cimbalo A,Alonso-Garrido M,Font G,et al. Toxicity of mycotoxins in vivo on vertebrate organisms:A review[J]. Food and Chemical Toxicology,2020,137(1):111161.

    [12]

    Han Z,Zhang Y,Wang C,et al. Ochratoxin A-triggered chicken heterophil extracellular traps release through reactive oxygen species production dependent on activation of NADPH oxidase,ERK,and p38 MAPK signaling pathways[J]. Journal of Agricultural and Food Chemistry,2019,67(40):11230.

    [13]

    Weng S,Zhu W,Zhang X,et al. Recent advances in Raman technology with applications in agriculture,food and biosystems:A review[J]. Artificial Intelligence in Agriculture,2019,3(1):1-10.

    [14]

    Fleischmann M,Hendra P J,Mcquillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters,1974,26(2):163-166.

    [15]

    Jeanmaire D L,Van Duyne R P. Surface raman spectroelectrochemistry:Part I. Heterocyclic,aromatic,and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1977,84(1):1-20.

    [16]

    Albrecht M G,Creighton J A. Anomalously intense Raman spectra of pyridine at a silver electrode[J]. Journal of the American Chemical Society,1977,99(15):5215-5217.

    [17]

    Wessel J E,Surface-enhanced optical microscopy[J]. Journal of the Optical Society of America B,1985,9(2):1538-1541.

    [18] 韩钰. 基于四氧化三铁的金、银复合纳米颗粒的合成与生物医学应用[D].厦门:厦门大学,2020.
    [19]

    Xu N,Lai K,Fan Y,et al. Rapid analysis of herbicide diquat in apple juice with surface enhanced Raman spectroscopy:Effects of particle size and the ratio of gold to silver with gold and gold-silver core-shell bimetallic nanoparticles as substrates[J]. LWT,2019,116(1):108547.

    [20] 丁松园,吴德印,杨志林,等. 表面增强拉曼散射增强机理的部分研究进展[J]. 高等学校化学学报,2008,12(1):256-268.
    [21] 杜俊梅. 应用于食品安全的表面增强拉曼的机理研究[D].成都:西南交通大学,2017.
    [22] 杨志林. 金属纳米粒子的光学性质及过渡金属表面增强拉曼散射的电磁场机理研究[D].厦门:厦门大学,2006.
    [23] 张鑫. 金属亚波长结构阵列电磁场增强及光学异常透射的机理研究[D].天津:南开大学,2014.
    [24] 史如意. 基于等离子体光催化反应的亚硝酸盐表面增强拉曼光谱快速检测[D].杭州:浙江大学,2018.
    [25]

    Wiercigroch E,Swit P,Kisielewska A,et al. Photocatalytic deposition of plasmonic Au nanostructures on a semiconductor substrate to enhance Raman sensitivity[J]. Applied Surface Science,2020,16(1):147021.

    [26]

    Qi X,Wei Y,Jiang C,et al. Investigate on plasma catalytic reaction of 4-nitrobenzenethiol on Ag@SiO2 Core-Shell substrate via Surface-enhanced Raman scattering[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2020,237(1):118362.

    [27]

    Guo Y,Li D,Zheng S,et al. Utilizing Ag-Au core-satellite structures for colorimetric and surface-enhanced Raman scattering dual-sensing of Cu(Ⅱ)[J]. Biosensors and Bioelectronics,2020,159(1):112192.

    [28]

    Wang T,Huntzinger J-R,Bayle M,et al. Buffer layers inhomogeneity and coupling with epitaxial graphene unravelled by Raman scattering and graphene peeling[J]. Carbon,2020,163(1)224-233.

    [29]

    Zeng S,Jia F,Yang B,et al. In-situ reduction of gold thiosulfate complex on molybdenum disulfide nanosheets for a highly-efficient recovery of gold from thiosulfate solutions[J]. Hydrometallurgy,2020,195(1):105369.

    [30]

    Cho H W,Liao K L,Yang J S,et al. Revelation of rutile phase by Raman scattering for enhanced photoelectrochemical performance of hydrothermally-grown anatase TiO2 film[J]. Applied Surface Science,2018,440(1):125-132.

    [31]

    Doan Q K,Nguyen M H,Sai C D,et al. Enhanced optical properties of ZnO nanorods decorated with gold nanoparticles for self cleaning surface enhanced Raman applications[J]. Applied Surface Science,2020,505(1):144593.

    [32] 王明利. Ag(Au)纳米颗粒三维阵列结构的SERS性能研究[D].秦皇岛:燕山大学,2014.
    [33]

    Wang K,Sun D W,Pu H,et al. Surface-enhanced Raman scattering of core-shell Au@Ag nanoparticles aggregates for rapid detection of difenoconazole in grapes[J]. Talanta,2019,191(1):449-456.

    [34]

    Jiang X,Tan Z Y,Lin L,et al. Surface-enhanced raman nanoprobes with embedded standards for quantitative cholesterol detection[J]. Small Methods,2018,2(11):14-21.

    [35]

    Qi G,Zhang Y,Xu S,et al. Nucleus and mitochondria targeting theranostic plasmonic surface-enhanced raman spectroscopy nanoprobes as a means for revealing molecular stress response differences in hyperthermia cell death between cancerous and normal cells[J]. Analytical Chemistry,2018,90(22):13356-13364.

    [36] 李文鹏. 贵金属Au及其核壳结构纳米粒子的制备与SERS性能研究[D].青岛:青岛科技大学,2014.
    [37]

    Shao B,Ma X,Zhao S,et al. Nanogapped Au(core)@Au-Ag(shell)structures coupled with Fe3O4 magnetic nanoparticles for the detection of Ochratoxin A[J]. Anal Chim Acta,2018,1033(1):165-172.

    [38] 牛德超. 基于嵌段共聚物的多功能纳米复合材料制备及生物医学应用[D].上海:华东理工大学,2012.
    [39]

    Song D,Yang R,Fang S,et al. SERS based aptasensor for ochratoxin A by combining Fe3O4@Au magnetic nanoparticles and Au-DTNB@Ag nanoprobes with multiple signal enhancement[J]. Mikrochim Acta,2018,185(10):491.

    [40]

    Oplatowska-Stachowiak M,Sajic N,Xu Y,et al. Fast and sensitive aflatoxin B1 and total aflatoxins ELISAs for analysis of peanuts,maize and feed ingredients[J]. Food Control,2016,63(1):239-245.

    [41] 王丁. 电化学多肽生物传感器信号放大策略的研究[D]. 重庆:西南大学,2017.
    [42]

    Li Q,Lu Z,Tan X,et al. Ultrasensitive detection of aflatoxin B1 by SERS aptasensor based on exonuclease-assisted recycling amplification[J]. Biosensors and Bioelectronics,2017,97(1):59-64.

    [43] 黄德萍. 季铵盐阳离子表面活性剂辅助枝状金纳米材料的生长[D].济南:山东大学,2012.
    [44]

    Yang M,Liu G,Mehedi H M,et al. A universal SERS aptasensor based on DTNB labeled GNTs/Ag core-shell nanotriangle and CS-Fe3O4 magnetic-bead trace detection of Aflatoxin B1[J]. Analytica Chimica Acta,2017,986(1):122-130.

    [45]

    Sun C,Ji J,Wu S,et al. Saturated aqueous ozone degradation of deoxynivalenol and its application in contaminated grains[J]. Food Control,2016,69(1):185-190.

    [46] 袁景. 基于表面增强拉曼光谱的真菌毒素和农药残留的检测及其应用[D].上海:上海师范大学,2016.
    [47]

    Yuan J,Sun C,Guo X,et al. A rapid Raman detection of deoxynivalenol in agricultural products[J]. Food Chemistry,2017,221(1):797-802.

    [48]

    Tegegne W A,Mekonnen M L,Beyene A B,et al. Sensitive and reliable detection of deoxynivalenol mycotoxin in pig feed by surface enhanced Raman spectroscopy on silver nanocubes@polydopamine substrate[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2020,229(1):117940.

    [49]

    Li Y,Chen Q,Xu X,et al. Microarray surface enhanced Raman scattering based immunosensor for multiplexing detection of mycotoxin in foodstuff[J]. Sensors and Actuators B:Chemical,2018,266(1):115-123.

    [50]

    Zhao Y,Yang Y,Luo Y,et al. Double detection of mycotoxins based on sers labels embedded Ag@Au core-shell nanoparticles[J]. ACS Applied Materials & Interfaces,2015,7(39):21780-21786.

  • 期刊类型引用(3)

    1. 陈家伟,谈婷,丁丽,王星,肖理文. 黄曲霉毒素B_1/呕吐毒素/玉米赤霉烯酮三合一时间分辨荧光定量快速检测卡的样品稀释液优化. 粮食加工. 2025(02): 114-119+131 . 百度学术
    2. 韩冰,贾永梅,李志果,周国华,刘培炼,余彪,张玲玲,薛茗月. 核酸适配体传感器在黄曲霉毒素B1检测中应用研究进展. 分析科学学报. 2022(03): 371-376 . 百度学术
    3. 王哲,陈芳,董丽,胡小松. 表面增强拉曼光谱在食源性致病菌检测中的应用研究进展. 食品研究与开发. 2022(17): 184-193 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  454
  • HTML全文浏览量:  48
  • PDF下载量:  54
  • 被引次数: 9
出版历程
  • 收稿日期:  2020-05-05
  • 网络出版日期:  2021-03-02
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回
    x 关闭 永久关闭