• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

南昆山毛叶茶对tBHP诱导损伤NIH3T3细胞的保护效果

刘诗妤, 陈忠正, 林晓蓉, 张媛媛, 周浪花, 高雄, 李斌

刘诗妤, 陈忠正, 林晓蓉, 张媛媛, 周浪花, 高雄, 李斌. 南昆山毛叶茶对tBHP诱导损伤NIH3T3细胞的保护效果[J]. 食品工业科技, 2021, 42(2): 90-98. DOI: 10.13386/j.issn1002-0306.2020040170
引用本文: 刘诗妤, 陈忠正, 林晓蓉, 张媛媛, 周浪花, 高雄, 李斌. 南昆山毛叶茶对tBHP诱导损伤NIH3T3细胞的保护效果[J]. 食品工业科技, 2021, 42(2): 90-98. DOI: 10.13386/j.issn1002-0306.2020040170
LIU Shiyu, CHEN Zhongzheng, LIN Xiaorong, ZHANG Yuanyuan, ZHOU Langhua, GAO Xiong, LI Bin. Protective Effect of Camellia ptilophylla Chang on the tBHP-Induced NIH3T3 Cells[J]. Science and Technology of Food Industry, 2021, 42(2): 90-98. DOI: 10.13386/j.issn1002-0306.2020040170
Citation: LIU Shiyu, CHEN Zhongzheng, LIN Xiaorong, ZHANG Yuanyuan, ZHOU Langhua, GAO Xiong, LI Bin. Protective Effect of Camellia ptilophylla Chang on the tBHP-Induced NIH3T3 Cells[J]. Science and Technology of Food Industry, 2021, 42(2): 90-98. DOI: 10.13386/j.issn1002-0306.2020040170

南昆山毛叶茶对tBHP诱导损伤NIH3T3细胞的保护效果

基金项目: 

现代茶叶产业技术体系专项资金(CARS-19);广东省自然科学基金面上项目(2018A030313917)。

详细信息
    作者简介:

    刘诗妤(1996-),女,硕士,研究方向:食品化学,E-mail:liushiyucc1996@163.com。

    通讯作者:

    高雄(1988-),男,博士,研究方向:天然产物功能活性,E-mail:gaoxiong@gdim.cn。

    李斌(1960-),女,博士,教授,研究方向:茶叶精深加工、天然产物功能特性,E-mail:bli@scau.edu.cn

  • 中图分类号: TS201.2

Protective Effect of Camellia ptilophylla Chang on the tBHP-Induced NIH3T3 Cells

  • 摘要: 本研究以南昆山毛叶茶为材料,探讨其水提物对叔丁基过氧化氢(tert-butyl hydroperoxide,tBHP)诱导小鼠成纤维细胞NIH3T3氧化损伤的保护作用。以tBHP诱导NIH3T3细胞建立氧化损伤模型,采用四甲基偶氮唑盐(methyl thiazolyl tetrazolium,MTT)法测定细胞存活率,乳酸脱氢酶(lactate dehydrogenase,LDH)检测试剂盒测定细胞膜完整性。同时,检测细胞内活性氧(reactive oxygen species,ROS)、丙二醛(malondialdehyde,MDA)、谷胱甘肽(glutathione,GSH)含量,以及过氧化氢酶(catalase,CAT)、谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)、超氧化物歧化酶(superoxide dismutase,SOD)抗氧化酶活性,评价其抗氧化能力,荧光探针测定线粒体膜电位(mitochondrial membrane potential,MMP)变化,分光光度法和Western blot检测caspase-3、caspase-9、细胞色素c的表达以探究其损伤保护机制。结果表明,与tBHP组相比,南昆山毛叶茶水提物在25~100 μg/mL浓度范围内,细胞存活率由49.68%显著提高至81.69%;LDH活性由520.70 U/L降低至346.42 U/L。同时,可显著抑制ROS、MDA产生,均为tBHP组的0.02倍,增加GSH含量至tBHP组的3.07倍,提高CAT、GSH-Px、SOD等抗氧化酶活性,分别为tBHP组的1.42倍、2.48倍和1.77倍,提高MMP,抑制caspase-3、caspase-9、细胞色素c的表达。说明南昆山毛叶茶水提物能修复抗氧化系统,抑制线粒体细胞凋亡途径,有效减缓tBHP诱导的NIH3T3细胞氧化损伤。本研究初步揭示了南昆山毛叶茶的抗氧化机理,为这一特殊资源的更广泛开发利用提供了抗氧化功能特性的理论研究基础。
    Abstract: In this study,the protective effect of water extract from Camellia ptilophylla Chang on the tert-butyl hydroperoxide(tBHP)-induced oxidative damage in mouse fibroblast NIH3T3 cells was investigated. Cell viability was analyzed by methyl thiazolyl tetrazolium(MTT)method and the cell membrane integrity was determined by a lactate dehydrogenase(LDH)kit. Besides,the levels of intracellular reactive oxygen species(ROS),malondialdehyde(MDA),and glutathione(GSH),as well as the activities of catalase(CAT),glutathione peroxidase(GSH-Px)and superoxide dismutase(SOD)were measured to evaluate the antioxidant capacity of Camellia ptilophylla Chang. To further explore the underlying mechanism,the mitochondrial membrane potential(MMP)was detected by a fluorescent probe,and the expressions of caspase-3,caspase-9 and cytochrome c were measured by spectrophotometry and western blot. The results showed that,in comparison with the tBHP group,the water extract of Camellia ptilophylla Chang significantly increased the cell viability of tBHP-induced NIH3T3 from 49.68% to 81.69%. Meanwhile,the LDH activity decreased from 520.70 U/L to 346.42 U/L when the cells were incubated with 25~100 μg/mL of water extract from Camellia ptilophylla Chang. Moreover,the GSH content increased to 3.07 folds while the production of ROS and MDA decreased to 0.02 folds. Furthermore,the increase in the activities of major antioxidase(CAT,GSH-Px and SOD)to 1.42、2.48、1.77 folds respectively,and MMP as well as the inhibition in the expressions of caspase-3,caspase-9 and cytochrome c were observed. These results suggested that the water extract of Camellia ptilophylla Chang could effectively protect NIH3T3 cells from the tBHP-induced oxidative damage by repairing the antioxidant system and inhibiting the mitochondrial apoptotic pathway. The present study preliminarily revealed the antioxidant mechanism of Camellia ptilophylla Chang.It advanced our knowledge of the antioxidant properties of Camellia ptilophylla Chang and provided us with useful information for its further utilization.
  • [1] 张宏达,叶创兴,张润梅,等.中国发现新的茶叶资源——可可茶[J].中山大学学报(自然科学版),1988(3):131-133.
    [2] 旷小珊,高雄,林晓蓉,等.南昆山毛叶茶三种多酚的分离纯化及抗氧化研究[J].食品工业科技,2020,41(5):31-39.
    [3]

    Li M M,Xue J Y,Wen Y L,et al. Transcriptomic analysis of Camellia ptilophylla and identification of genes associated with flavonoid and caffeine biosynthesis[J]. Genetics and molecular research,2015,14(4):18731-18742.

    [4]

    Peng L,Wang X,Shi X,et al. Characterization of the constituents and antioxidative activity of cocoa tea(Camellia ptilophylla)[J]. Food Chemistry,2011,129(4):1475-1482.

    [5]

    Gao X,Li X F,Ho C T,et al. Cocoa tea(Camellia ptilophylla)induces mitochondria-dependent apoptosis in HCT116 cells via ROS generation and PI3K/Akt signaling pathway[J]. Food research international,2020,129:108854.

    [6]

    Li K K,Liu C L,Shiu H T,et al. Cocoa tea(Camellia ptilophylla)water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes[J]. Scientific Reports,2016,6(1):1-11.

    [7]

    Li K K,Liu C,Tam,et al.In vitro and in vivo mechanistic study of a novel proanthocyanidin,GC-(4→8)-GCG from cocoa tea(Camellia ptilophylla)in antiangiogenesis[J]. The Journal of Nutritional Biochemistry,2014,25(3):319-328.

    [8]

    Li K K,Shi X G,Yang X R,et al. Antioxidative activities and the chemical constituents of two Chinese teas,Camellia kucha and C. ptilophylla[J]. International Journal of Food Science & Technology,2012,47(5):1063-1071.

    [9] 高雄. 南昆山毛叶茶抗癌、抗炎、抗氧化及丙酮醛捕获功能特性研究[D].广州:华南农业大学,2017.
    [10]

    Poprac P,Jomova K,Simunkova M,et al. Targeting free radicals in oxidative stress-related human diseases[J]. Trends in Pharmacological Sciences,2017,38(7):592-607.

    [11]

    Reczek C R,Chandel N S.ROS-dependent signal transduction[J]. Current Opinion in Cell Biology,2015,33:8-13.

    [12]

    Martinelli C,Pucci C,Battaglini M,et al. Antioxidants and nanotechnology:Promises and limits of potentially disruptive approaches in the treatment of central nervous system diseases[J].Advanced Healthcare Materials,2020,9(3):1901589.

    [13] 万欣. AAPH诱导Ferroptosis影响鸡胚骨发育[D].广州:暨南大学,2017.
    [14] 李娴,何钊,丁伟峰,等.美洲大蠊油脂对过氧化氢诱导SH-SY5Y细胞氧化损伤的保护作用[J].环境昆虫学报,2018,40(1):36-42.
    [15] 郑浩,李占鲁,沈啸华,等.白藜芦醇抑制叔丁基过氧化物诱导的外周血内皮祖细胞损伤[J].中国病理生理杂志,2017,33(6):1073-1079.
    [16]

    Kim Y S,Hwang J W,Sung S H,et al. Protective effect of carvacrol from thymus quinquecostatus celak againsttert-butyl hydroperoxide-induced oxidative damage in chang cells[J].Food Science and Biotechnology,2015,24(2):735-741.

    [17]

    T M M,Anand T,Khanum F. Attenuation of cytotoxicity induced by tBHP in H9c2 cells by bacopa monniera and bacoside A[J]. Pathophysiology:the Official Journal of the International Society for Pathophysiology,2018,25(2):143-149.

    [18]

    Wenz C,Faust D,Linz,B,et al. T-BuOOH induces ferroptosis in human and murine cell lines[J]. Archives of toxicology,2018,92(2):759-775.

    [19] 钟萝. 茶叶品质理化分析[M]. 上海:上海科学技术出版社,1989:295-296.
    [20]

    Guo Q,Zhao B,Shen S,et al. ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers[J]. Biochimica et Biophysica Acta(BBA)-General Subjects,1999,1427(1):13-23.

    [21] 沈生荣,金超芳,杨贤强,等. EGCG和GCG清除单线态氧效果的ESR鉴别[J].茶叶科学,2000,20(1):19-21.
    [22] 林晓蓉.天然茶汤纳米聚集体形成机理与功能特性研究[D].广州:华南农业大学,2014.
    [23]

    Gao Z,Huang K,Xu H.Protective effects of flavonoids in the roots of scutellaria baicalensis georgi against hydrogen peroxide-induced oxidative stress in SH-SY5Y cells[J]. Pharmacological Research,2001,43(2):173-178.

    [24]

    He L,He T,Farrar S,et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species[J]. Cellular Physiology and Biochemistry,2017,44(2):532-553.

    [25]

    Islam M T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders[J]. Neurological Research,2017,39(1):73-82.

    [26]

    Yan F,Chen X,Zheng X. Protective effect of mulberry fruit anthocyanin on human hepatocyte cells(LO2)and caenorhabditis elegans under hyperglycemic conditions[J]. Food Research International,2017,102:213-224.

    [27]

    Case J,Ingram D A,Haneline L S. Oxidative stress impairs endothelial progenitor cell function[J]. Antioxidants & Redox Signaling,2008,10(11):1895-1907.

    [28]

    Chen J,Shi X,Chen Y,et al. Neuroprotective effects of chloroform and aqueous fractions of noni juice against t-Butyl hydroperoxide-induced oxidative damage in SH-SY5Y cells[J]. Food & nutrition research,2018,62:1605.

    [29]

    D A M S. Cell death:A review of the major forms of apoptosis,necrosis and autophagy[J]. Cell Biology International,2019,43(6):582-592.

    [30]

    Zhuang Y,Liu P,Wang L Q,et al. Mitochondrial oxidative stress-induced hepatocyte apoptosis reflects increased molybdenum intake in caprine[J]. Biological trace element research,2016,170(1):106-114.

    [31] 姚贤凤,郑开金,陈梅,等.洋葱总黄酮减轻过氧化氢诱导的视网膜色素上皮细胞氧化损伤[J].中国病理生理杂志,2019,35(11):2055-2060.
  • 期刊类型引用(1)

    1. 黄秋颜,李斌,林晓蓉,鲁森,陈忠正,张媛媛. 基于高分辨质谱和网络药理学的可可茶多酚降血糖活性研究. 食品与机械. 2023(09): 4-11 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  355
  • HTML全文浏览量:  40
  • PDF下载量:  29
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-04-14
  • 网络出版日期:  2021-01-20
  • 刊出日期:  2021-01-14

目录

    /

    返回文章
    返回
    x 关闭 永久关闭