Optimization of Enzyme Reaction System of α-Amylase by Response Surface Methodology
-
摘要: 目的:采用单因素实验及响应面法优化α-淀粉酶的反应体系。方法:以淀粉为底物对象,以可溶性淀粉浓度、α-淀粉酶浓度、反应时间为考察因素,在单因素实验基础上,运用Box-behnken实验设计方法研究各因素及其交互作用对α-淀粉酶作用底物时的反应速度的影响。结果:建立α-淀粉酶酶反应体系的最佳反应条件为12.0 mg/mL可溶性淀粉、1.50 U/mL α-淀粉酶、10.0 min反应时间,在此条件下,α-淀粉酶表现出的反应速度达到(19.53±1.74) mmol/(L·min),接近模型中的预测数值18.75 mmol/(L·min)。结论:此优化α-淀粉酶酶反应体系的方法可行,能够使α-淀粉酶在反应过程中发挥的酶活最大化,为日后在此体系下进行糖苷酶抑制剂的研究奠定了基础,具有一定的指导意义。Abstract: Objective:To optimize the reaction system of α-amylase by single-factor optimization and by response surface methodology. Methods:Based on single factor experiment using starch as substrate of α-amylase,and regarding the soluble starch concentration,the α-amylase concentration and the reaction time as three major factors,the Box-behnken design experiment was used to optimize the reaction system conditions of α-amylase and to study the influence of these factors and their interaction on the reaction rate of α-amylase. Results:The optimizing system parameter were as follows:soluble starch 12.0 mg/mL,α-amylase 1.50 U/mL,and reaction time 10.0 min. Under the conditions,the reaction rate of α-amylase was up to(19.53±1.74) mmol/(L·min). This result was near the predicted value of 18.75 mmol/(L·min)in the optimal model. Conclusion:The optimal method of reaction system of α-amylase is reliable and practical significantly for making α-amylase play an excellent activity,which to some extent lays the foundation for the study of glycosidase inhibitors efficiently under the optimal system.
-
Keywords:
- α-amylase /
- soluble starch /
- reaction time /
- reaction rate /
- response surface methodology
-
[1] Kato E,Chikahisa F,Kawabata J. Synthesis and study of the pancreatic α-amylase inhibitory activity of methyl acarviosin and its derivatives[J]. Tetrahedron Letters,2016,57(12):1365-1367.
[2] Tapati B D,Arvind K,Rintu B,et al. Improvement of microbial α-amylase stability:strategic approaches[J]. Process Biochemistry,2016,51(10):4-22.
[3] Naili B,Sahnoun M,Bejar S,et al. Optimization of submerged Aspergillus oryzae S2α-amylase production[J]. Food Science and Biotechnology,2016,25(1):185-192.
[4] Lopaschuk G D,Ussher J R. Evolving concepts of myocardial energy metabolism:more than just fats and carbohydrates[J]. Circulation Research,2016,119(11):1173-1176.
[5] Wang Y,Chao C,Huang H,et al. Revisiting mechanisms underlying digestion of starches[J]. Journal of Agricultural and Food Chemistry,2019,67(29):1-15.
[6] Sun L,Warren F J,Gidley M J. Soluble polysaccharides reduce binding and inhibitory activity of tea polyphenols against porcine pancreatic α-amylase[J]. Food Hydrocolloids,2018,79:63-70.
[7] Schauer P R,Nor H Z,Rubino F. Metabolic surgery for treating type 2 diabetes mellitus:Now supported by the world's leading diabetes organizations[J]. Cleveland Clinic Journal of Medicine,2017,84(7):47-56.
[8] Erukainure O L,Hafizur R M,Nurul K,et al. Suppressive effects of Clerodendrum volubile P Beauv.[Labiatae]methanolic extract and its fractions on type 2 diabetes and its complications[J]. Frontiers in Pharmacology,2018,9(8):1-13.
[9] Inzucchi S E,Bergenstal R M,Buse J B,et al. Management of hyperglycaemia in type 2 diabetes:a patient-centred approach. Update to a position statement of the american diabetes association and the european association for the study of diabetes[J]. Diabetologia,2015,58(3):429-442.
[10] Mahendranath G,Prasada Rao U J S. Ethanol extract of mango(Mangifera indica L.)peel inhibits α-amylase and α-glucosidase activities,and ameliorates diabetes related biochemical parameters instreptozotocin(STZ)-induced diabetic rats[J]. Journal of Food Science & Technology,2015,52(12):7883-7893.
[11] Barrera G N,Tadini C C,Alberto E L,et al. Use of alpha-amylase and amyloglucosidase combinations to minimize the bread quality problems caused by high levels of damaged starch[J]. Journal of Food Science and Technology-Mysore-,2016,53(10):1-10.
[12] 尹延霞,朱奇峰,刘汉杰,等. 中心组合实验设计响应面法优化α-淀粉酶抑制剂筛选条件[J]. 西南师范大学学报(自然科学版),2015,40(4):83-88. [13] 赵凯,许鹏举,谷广烨. 3,5-二硝基水杨酸比色法测定还原糖含量的研究[J]. 食品科学,2008,29(8):534-536. [14] 吕欢,罗明琍,方飞,等. 桑叶提取物对体外α-葡萄糖苷酶活性的影响[J]. 时珍国医国药,2012,23(1):41-42. [15] Wang M,Jin Z,Liu L,et al. Inhibition of cyclodextrins on the activity of α-amylase[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2018,90(1):1-6.
[16] 刘春滟,黎霞. 阿卡波糖抑制Ⅲ型α-葡萄糖苷酶动力学研究[J]. 四川师范大学学报(自然科学版),2015,38(2):286-291. [17] 吕娜,南敏伦,赵昱玮,等. α-葡萄糖苷酶抑制剂的研究进展[J]. 黑龙江医药,2015,28(2):238-242. [18] 刘瑞丽,丁美萍,徐雯,等. α-葡萄糖苷酶抑制剂研究进展[J]. 药物生物技术,2009,16(4):388-392. [19] 曹建康,姜微波,赵玉梅. 果蔬采后生理生化实验指导[M]. 北京:中国轻工业出版社,2007:23-65. [20] Oboh G,Ademiluyi A O,Akinyemi A J,et al. Inhibitory effect of polyphenol-rich extracts of jute leaf(Corchorus Olitorius)on key enzyme linked to type Ⅱ diabetes(α-amylase and α-glucosidase)and hypertension(angiotensin I converting)in vitro[J]. Journal of Functional Foods,2012,4(2):450-458.
[21] 张晋超,赵雄,吕茂民,等. 发色底物法在酶促反应初速度内测定α1抗胰蛋白酶的活性[J]. 军事医学,2015,39(3):189-192. [22] 吴华涛,李玥,王亚丽. 小麦种子中α-淀粉酶酶学性质的研究[J]. 化工时刊,2008,22(12):8-10. [23] 崔明月,曲亚男,蒋丽娜,等. 抑制剂对杏多酚氧化酶抑制作用[J]. 食品工业,2019,40(6):225-229. [24] Hans Bisswanger. 酶学实验手册[M]. 北京:化学工业出版社,2009:10-70. [25] 王志鹏,邓耿. 酶促反应中的化学平衡改变[J]. 生命的化学,2015,35(5):691-694. [26] 初众,胡美杰,徐飞,等. 响应面法优化酶法提取菠萝蜜种子淀粉工艺[J]. 食品工业科技,2016,37(20):189-193. [27] 邓春梅,吴祖件,何兰珍,等. 碱法预处理琼枝麒麟菜提取卡拉胶的工艺优化[J]. 食品工业科技,2017,38(22):178-183. -
期刊类型引用(1)
1. 何军波,贾庆超. 模糊数学评价结合响应面法优化黑蒜香菇酱制备工艺及抗氧化活性和储藏分析. 食品工业科技. 2023(19): 47-56 . 本站查看
其他类型引用(1)
计量
- 文章访问数: 235
- HTML全文浏览量: 18
- PDF下载量: 22
- 被引次数: 2