• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
瞿桂香, 马文慧, 董志俭, 陈玉勇, 展跃平. 小龙虾肉脯的工艺优化[J]. 食品工业科技, 2021, 42(3): 158-164. DOI: 10.13386/j.issn1002-0306.2020040047
引用本文: 瞿桂香, 马文慧, 董志俭, 陈玉勇, 展跃平. 小龙虾肉脯的工艺优化[J]. 食品工业科技, 2021, 42(3): 158-164. DOI: 10.13386/j.issn1002-0306.2020040047
QU Guixiang, MA Wenhui, DONG Zhijian, CHEN Yuyong, ZHAN Yueping. Optimization of Dried Crayfish Slice Processing Technology[J]. Science and Technology of Food Industry, 2021, 42(3): 158-164. DOI: 10.13386/j.issn1002-0306.2020040047
Citation: QU Guixiang, MA Wenhui, DONG Zhijian, CHEN Yuyong, ZHAN Yueping. Optimization of Dried Crayfish Slice Processing Technology[J]. Science and Technology of Food Industry, 2021, 42(3): 158-164. DOI: 10.13386/j.issn1002-0306.2020040047

小龙虾肉脯的工艺优化

Optimization of Dried Crayfish Slice Processing Technology

  • 摘要: 本文以质构、色差、感官评分为指标,研究糖盐比、TG酶添加量、烤制温度、烤制时间对小龙虾肉脯品质的影响。在此基础上,以感官评分和硬度为响应值,采用响应面设计优化工艺条件,得到的最佳工艺参数为:100 g小龙虾肉,糖盐比7.5∶2.5(10.0 g)、TG酶添加量2.00 U/g、烤制温度145℃、烤制时间9 min,此工艺加工而成的小龙虾肉脯产品片形整齐,厚薄均匀,色泽淡红清亮,咸甜适宜,有较好的弹性,硬度、咀嚼性适中,感官评分为89.00分,硬度为540.45 N,试验结果值与理论预测值误差分别是0.84%、0.46%,模型拟合度好,试验结果可靠。

     

    Abstract: In this paper,texture,color difference and sensory score were used as indicators to study the effects of sugar/salt ratio,TG enzyme addition,baking temperature and baking time on the dried crayfish slice. On this basis,the sensory score and hardness as response value,process condition was optimized by using response surface design.The optimum parameters were ratio of sugar/salt 7.5∶2. 5 (10.0 g),TG enzyme amount 2.00 U/g,baking temperature 145 ℃,bake time 9 min,under this condition the dried crayfish slices were neat in shape,even in thickness,red and bright in color,moderatey salty and sweet with good elasticity,hardness and moderate chew ability.The sensory score was 89.00 and the hardness was 540.45 N. The test results and the theory prediction error was 0.84%,0.46% respectively. The fit of the model was good and the results was reliable.

     

/

返回文章
返回