Variation in the Chemical Composition and Biological Activities of Sphallerocarpus gracilis Stems and Leaves among Different Harvesting Time
-
Abstract: Variations in the chemical composition and biological activities of a functional food Sphallerocarpus gracilis stems and leaves (SLSG) harvested at different time were investigated, so as to provide new information and scientific recommendations with the best biological activities for the further exploitation of this resource. The samples harvested in autumn in autumn showed higher contents of most nutrients than harvested in spring, and the samples harvested in the second year showed higher contents of most nutrients than harvested in the first year. Following in vitro GI digestion, SLSG showed a good release percentage for most elements; however, the release of amino acids, especially Trp, Gly, Pro and Glu, which showed a very low release percentage (approximately 6%~11%). Regarding polyphenols, L7G and A7O were the main phenolic substances in SLSG, and 48%~55% of TP and 40%~70% of the individual phenolic substances were observed in the serum fraction. SLSG showed a good antioxidant capacity, an inhibitory effect against α-glucosidase and a hepatoprotective effect in vitro. Polyphenols and amino acids were the main contributors to these biological activities. Harvesting time T4 showed the best results in most indexes, including contents of Ca, Zn, Cu, Se Na, P, polyphenols, antioxidant ability, inhibitory effects on α-amylase and α-glucosidase, etc. These results increased the understanding of the chemical composition and biological activities of SLSG and provided new information and scientific recommendations with the best biological activities for the further exploitation of this resource.摘要: 本文分析了不同采收期黄参茎叶(SLSG)的化学成分及生物活性变化,以期为该资源的进一步开发利用提供新信息和科学建议。结果表明对于SLSG中的大多数营养物质,其在秋季采收样品中的含量高于春季采收样品,在次年采收样品中的含量高于同年采收样品。通过体外模拟消化发现,SLSG对于大部分矿物元素有较好的释放率。SLSG对氨基酸的释放率,尤其是色氨酸、甘氨酸、脯氨酸和谷氨酸(约为6%~11%),略低于其他营养物质。L7G和A7O是SLSG中主要的酚类物质,并且在模拟血清吸收中检测出48%~55%的总酚和40%~70%的单体酚。SLSG具有良好的抗氧化能力、α-葡萄糖苷酶抑制作用及体外保肝作用。多酚类物质和氨基酸是这些生物活性功能的主要来源。采收期T4的大多数指标测定结果最优,包括Ca、Zn、Cu、Se、Na、P、酚类物质含量,抗氧化能力,α-淀粉酶及α-葡萄糖苷酶抑制作用等。上述结果加深了对SLSG化学成分及生物活性的认识,并且为该资源的进一步开发利用提供了新信息和科学建议。
-
Figure 2. Changes in the mineral elements of S. gracilis stems and leaves with different harvest time during in vitro GI digestion
Notes: (A):K, (B):Mg, (C):Ca, (D):Fe, (E):Zn, (F):Cu, (G):Se, (H):Mn, and (I):Na and P. Different lowercase letters showed significant differences among different harvest time at P < 0.05; different capital letters showed significant differences among the different digestion phases at P < 0.05; Different lowercase and capital letters of Table 1, Table 2, Fig.3~Fig.5 had the same meaning with Fig.2.
Figure 6. The hepatoprotective effect in vitro of S. gracilis stems and leaves harvested at different time during in vitro GI digestion.
Notes: (A) Cell viability and (B) AST, ALT and AKP activities of BRL hepatocytes injured with CCl4 (X±SD; n=5). Different letters in the same column showed significant differences among different groups (P < 0.05).
Table 1 The essential amino acid content in the SLSG samples harvested at different time during in vitro GI digestion (g/100 g DW)
Amino acid Harvest time Raw Oral Stomach Serum Colon Lys T1 389.23±17.09dA 98.29±5.98cD 122.31±7.44cC 249.39±10.21dB 37.48±2.09dE T2 798.12±24.88bA 211.28±12.09aD 277.48±14.09aC 509.09±34.13bB 65.98±3.48bE T3 443.28±28.09cA 112.09±8.11bD 149.09±10.49bC 301.28±15.28cB 44.57±3.14cE T4 844.09±30.12aA 212.19±10.09aD 287.09±22.47aC 568.09±34.87aB 72.09±4.75aE Trp T1 20.09±0.98dA 1.81±0.22dC 2.03±0.12dC 2.98±0.23dB 0.98±0.09dD T2 35.11±2.11bA 3.09±0.09bD 3.48±0.18bC 4.43±0.32bB 1.23±0.12cE T3 27.12±2.22cA 2.33±0.18cD 2.87±0.19cC 3.48±0.21cB 1.42±0.11bE T4 40.98±3.09aA 3.57±0.13aD 4.01±0.33aC 5.78±0.34aB 2.38±0.18aE Phe T1 387.09±17.09cA 122.98±8.09cD 287.49±21.09cB 245.98±11.78dC 67.49±4.78cD T2 757.12±26.09bA 233.18±21.09bD 572.38±34.78bB 500.98±23.76bC 109.09±7.87bD T3 400.12±18.89cA 134.28±12.09cD 309.17±16.09cB 275.09±13.87cC 75.98±6.76cD T4 819.29±44.09aA 264.31±18.09aD 617.09±34.09aB 566.97±13.09aC 130.98±11.67aD Met T1 156.49±7.28cA 75.41±2.43cD 80.98±3.21cC 89.37±4.58cB 10.48±0.78cE T2 178.12±10.24bA 92.38±3.22bD 98.87±3.09bC 112.48±5.09bB 14.37±1.09bE T3 177.48±5.98bA 95.42±3.19bC 99.86±3.28bC 118.41±6.54bB 19.47±1.15aD T4 193.09±5.55aA 102.38±2.98aD 106.65±2.34aC 130.28±3.45aB 14.64±1.34bE Thr T1 344.29±20.38dA 118.22±7.09dC 93.27±4.09cD 140.38±10.53dB 44.37±2.48bE T2 631.04±28.47bA 199.47±10.44bC 167.59±9.09bD 248.87±14.57bB 72.48±4.33aE T3 398.09±28.38cA 139.09±8.48cC 100.23±5.68cD 166.47±8.58cB 38.47±2.09cE T4 703.47±30.98aA 238.48±12.49aC 201.37±12.45aD 287.47±17.28aB 77.47±4.33aE Ile T1 231.09±14.28dA 37.18±2.38cD 48.38±2.98dC 76.49±4.09dB 23.09±2.38cE T2 381.42±22.89bA 65.48±2.22bD 79.48±3.88bC 122.39±8.77bB 39.48±2.43aE T3 288.48±17.28cA 57.58±4.09cC 55.48±2.09cC 107.09±5.09cB 27.33±1.98bD T4 443.09±23.22aA 78.09±2.47aD 97.28±3.89aC 139.48±7.04aB 39.48±3.09aE Leu T1 412.38±14.48dA 159.09±10.44dD 277.38±20.45dC 337.09±18.39dB 39.47±1.09cE T2 676.71±32.09bA 239.01±19.42cD 429.09±25.58bC 534.06±22.98bB 65.58±2.98bE T3 588.47±17.38cA 218.48±17.09cD 377.98±30.75cC 467.14±23.09cB 69.48±3.21bE T4 748.58±30.41aA 288.47±17.34aD 453.47±22.49aC 609.48±19.38aB 85.42±3.92aE Val T1 409.33±30.09dA 105.58±5.48dD 132.09±4.58dC 158.49±8.59dB 40.09±3.28cE T2 681.42±38.98bA 189.48±7.09bD 223.41±9.28bC 287.57±14.28bB 58.49±3.09bE T3 499.58±28.31cA 129.24±5.44cD 174.28±10.49cC 208.92±20.48cB 60.91±3.98bE T4 808.21±43.28aA 217.42±9.48aD 248.97±8.98aC 338.56±23.41aB 89.47±5.58aE TEA T1 2349.99±121.67dA 718.56±42.11dD 1043.93±63.96dC 1300.17±68.40dB 263.45±16.97dE T2 4139.06±185.7bA 1233.37±75.66bD 1851.78±99.97bC 2319.87±123.90bB 426.70±25.39bE T3 2822.62±146.53cA 888.51±58.67cD 1268.96±79.06cC 1647.88±93.14cB 337.63±22.42cE T4 4600.80±210.74aA 1404.91±73.07aD 2015.93±107.04aC 2646.11±118.86aB 511.93±34.86aE Note: SLSG: Stems and leaves of Sphallerocarpus gracilis; TEA: Total essential amino acids. Table 2 was the same. Table 2 The nonessential amino acid content in SLSG samples harvested at different times during in vitro GI digestion (g/100 g DW)
Amino acid Harvest time Raw Oral Stomach Serum Colon Tyr T1 701.27±10.09bA 187.28±8.98aD 204.48±10.09bC 298.76±13.29aB 89.87±4.38bE T2 725.17±28.81abA 199.21±13.09aC 211.28±18.28abC 309.97±22.09aB 92.09±3.09bD T3 737.09±28.47aA 209.18±15.48aC 233.57±15.49aC 320.91±25.47aB 84.38±4.41cD T4 711.23±8.87bA 202.09±13.28aD 227.09±13.89aC 316.27±22.38aB 98.11±3.98aE Asp T1 1374.31±87.39dA 278.87±18.28dD 319.28±28.38dC 564.87±37.19dB 129.74±7.47dE T2 2239.09±110.28bA 468.76±22.38bD 558.41±34.09bC 908.49±40.21bB 293.47±12.38bE T3 1588.47±73.98cA 328.17±17.09cD 365.09±28.38cC 698.41±22.09cB 198.38±10.92cE T4 2980.19±109.38aA 633.28±36.47aD 709.28±38.77aC 1272.09±78.88aB 322.09±14.87aE Ser T1 566.38±29.38dA 141.29±7.98cD 154.87±10.22cC 249.09±8.09dB 78.09±3.98dE T2 792.09±22.09bA 202.09±11.09bC 212.31±13.28bC 349.18±19.28bB 112.44±8.87bD T3 644.31±10.09cA 138.98±8.09cD 162.09±10.23cC 288.47±18.28cB 89.02±4.47cE T4 904.87±20.87aA 218.29±13.09aC 230.47±13.44aC 431.09±28.09aB 127.48±5.81aD Gly T1 550.47±38.09dA 61.98±3.28cC 65.44±5.31cC 80.98±3.29bB 43.09±3.01bD T2 647.36±20.87bA 70.39±2.98bC 74.09±6.09bC 88.09±3.97aB 39.28±2.09cD T3 612.37±19.27cA 68.27±4.38bD 75.49±2.02bC 84.18±4.31bB 39.01±2.11cE T4 739.07±23.28aA 79.87±4.99aC 83.29±2.98aC 92.91±3.21aB 48.28±3.88aD His T1 258.87±10.21aA 65.49±3.09cD 85.49±4.21bC 109.28±2.98aB 31.09±1.98bE T2 273.78±23.19aA 77.38±2.01bD 93.48±2.18aC 102.31±3.11bB 38.29±2.44aE T3 260.18±20.18aA 68.92±3.21cC 95.09±5.41aB 97.19±2.09cB 28.22±1.98cD T4 270.98±23.19aA 83.27±3.92aD 88.48±2.09bC 105.37±3.24abB 30.91±3.29bE Pro T1 609.27±39.09dA 35.47±2.19cD 49.18±2.37dC 63.29±2.18dB 35.21±3.09cD T2 1002.39±30.14bA 76.29±3.18bD 87.49±3.19bC 99.09±6.98bB 40.19±3.18aE T3 710.28±28.91cA 55.38±3.09cD 63.48±2.19cC 83.28±4.49cB 38.18±3.48cE T4 1098.09±34.18aA 80.29±6.38aD 90.41±4.58aC 101.21±7.09aB 42.19±2.89aE Ala T1 1389.09±43.19dA 578.18±29.34dD 639.18±29.48dC 981.28±44.03bB 198.49±8.38cE T2 1567.48±39.04bA 676.19±30.48bD 749.19±34.09bC 1048.29±59.48bB 219.48±12.34abE T3 1477.67±29.38cA 622.41±33.18cD 701.28±19.28cC 1010.48±49.28bB 203.48±19.48bE T4 1687.28±50.49aA 770.49±40.39aD 838.09±23.42aC 1147.49±29.48aB 233.14±18.29aE Glu T1 982.09±49.58dA 109.21±3.19dD 148.39±8.09dC 199.09±9.28dB 87.19±4.29dE T2 2035.38±104.28bA 221.09±11.41bD 331.08±15.39bC 439.18±22.49bB 177.09±5.29bE T3 1366.27±88.49cA 154.27±8.91cD 218.21±10.21cC 279.19±5.41cB 112.04±4.98cE T4 2356.87±149.51aA 265.48±14.09aD 378.29±18.41aC 479.09±14.21aB 201.48±7.08aE Cys T1 133.28±4.81cC 25.12±1.09bD 31.47±2.09cC 41.28±2.48bB 11.21±0.87bE T2 154.38±7.09abA 31.09±2.11aD 38.91±1.43bC 47.58±2.33aB 10.09±1.21bE T3 147.09±4.11bA 32.17±2.87aD 41.28±2.04aC 42.81±1.58bB 13.18±1.45aE T4 160.28±3.98aA 34.18±2.34aD 39.18±2.11aC 49.21±2.41aB 14.09±1.09aE Arg T1 377.48±18.27dA 132.15±8.11dD 158.04±7.09dC 219.09±12.09dB 37.84±2.48cE T2 482.18±22.08bA 176.09±4.09bD 199.74±10.38bC 301.28±15.86bB 49.88±3.99bE T3 429.09±17.18cA 148.09±3.98cD 179.28±7.58cC 254.87±15.22cB 54.98±2.09aE T4 512.01±23.81aA 201.98±6.88aD 221.09±13.19aC 287.98±8.09aB 56.18±4.58aE TAA T1 9292.50±451.77dA 2333.60±127.64dD 2899.75±171.29dC 4107.18±203.30dB 1005.27±56.90dE T2 14058.36±593.62bA 3431.95±178.48bD 4407.76±238.37bC 6013.33±319.70bB 1499.00±80.27bE T3 10795.44±466.59cA 2714.35±158.95cD 3403.82±181.89cC 4807.67±241.36cB 1198.50±77.79cE T4 16021.67±658.30aA 3974.13±214.90aD 4921.60±239.92aC 6928.82±315.94aB 1685.88±100.62aE TEA/TAA(%) T1 25.29 30.79 36.00 31.66 26.21 T2 29.44 35.94 42.01 38.58 28.47 T3 26.15 32.73 37.28 34.28 28.17 T4 28.72 35.35 40.96 38.19 30.37 Note: TAA: Total amino acid. Table 3 Mass spectral data and contents of the phenolic compounds identified in the SLSG
Peak Rt (min) MW MS (m/z) MS2 (m/z) Identified compounds 1 30.66 448 447 [M−H]− 285 Luteolin-7-O-glucoside 2 39.44 490 489 [M−H]− 285 Acacetin-7-O-acetyglycoside 3 41.79 490 489 [M−H]− 285 Acacetin-7-O-acetyglycoside isomer 1 4 48.87 490 489 [M−H]− 285 Acacetin-7-O-acetyglycoside isomer 2 -
[1] Ma T T, Sun X Y, Tian C R, et al. Enrichment and purification of polyphenol extract from Sphallerocarpus gracilis stems and leaves and in vitro evaluation of DNA damage-protective activity and inhibitory effects of α-amylase and α-glucosidase[J]. Molecules (Basel, Switzerland),2015,20(12):21442−21457. doi: 10.3390/molecules201219780
[2] Gao C Y, Tian C R, Zhou R, et al. Phenolic composition, DNA damage protective activity and hepatoprotective effect of free phenolic extract from Sphallerocarpus gracilis seeds[J]. International Immunopharmacology,2014,20(1):238−247. doi: 10.1016/j.intimp.2014.03.002
[3] Guo J, Wang J L, Song S, et al. Sphallerocarpus gracilis polysaccharide protects pancreaticβ-cells via regulation of the bax/bcl-2, caspase-3, pdx-1 and insulin signalling pathways[J]. International Journal of Biological Macromolecules,2016,93(Pt A):829−836.
[4] Gao C, Tian C, Lu Y, et al. Essential oil composition and antimicrobial activity of Sphallerocarpus gracilis seeds against selected food-related bacteria[J]. Food Control,2011,22:508−516. doi: 10.1016/j.foodcont.2010.09.037
[5] Ma T T, Sun X Y, Tian C R, et al. Chemical composition and hepatoprotective effects of polyphenols extracted from the stems and leaves of Sphallerocarpus gracilis[J]. Journal of Functional Foods,2015,18:673−683. doi: 10.1016/j.jff.2015.09.001
[6] Xu Y F, Song S, Wei Y X, et al. Sulfated modification of the polysaccharide from Sphallerocarpus gracilis and its antioxidant activities[J]. International Journal of Biological Macromolecules,2016,87:180−190. doi: 10.1016/j.ijbiomac.2016.02.037
[7] Ma T T, Sun X Y, Tian C R, et al. Polysaccharide extraction from Sphallerocarpus gracilis roots by response surface methodology[J]. International Journal of Biological Macromolecules,2016,88:162−170. doi: 10.1016/j.ijbiomac.2016.03.058
[8] Konakchiev A, Shatar S, Altantsetseg S, et al. The essential oil of Sphallerocarpus gracilis(Bess ex Trev) K-pol from outer Mongolian Gobi[J]. Journal of Essential Oil Bearing Plants,2010,13(5):575−578. doi: 10.1080/0972060X.2010.10643865
[9] Shi M R, Pe D, Liu J X, et al. Chemical constituents from Sphallerocarpus gracilis[J]. Biochemical Systematics and Ecology,2012,40:1−3. doi: 10.1016/j.bse.2011.09.008
[10] Celep E, Akyüz S, İnan Y, et al. Assessment of potential bioavailability of major phenolic compounds in Lavandula stoechas L. ssp. stoechas[J]. Industrial Crops and Products,2018,118:111−117. doi: 10.1016/j.indcrop.2018.03.041
[11] Minekus M, Alminger M, Alvito P, et al. A standardised static in vitro digestion method suitable for food-an international consensus[J]. Food & Function,2014,5(6):1113−1124.
[12] Alminger M, Aura A M, Bohn T, et al. In vitro models for studying secondary plant metabolite digestion and bioaccessibility[J]. Comprehensive Reviews in Food Science and Food Safety,2014,13(4):413−436. doi: 10.1111/1541-4337.12081
[13] Chen G L, Chen S G, Zhao Y Y, et al. Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion[J]. Industrial Crops and Products,2014,57:150−157. doi: 10.1016/j.indcrop.2014.03.018
[14] Lucas-Gonzalez R, Navarro-Coves S, Pérez-Álvarez J A, et al. Assessment of polyphenolic profile stability and changes in the antioxidant potential of maqui berry (Aristotelia chilensis (Molina) Stuntz) during in vitro gastrointestinal digestion[J]. Industrial Crops and Products,2016,94:774−782. doi: 10.1016/j.indcrop.2016.09.057
[15] Aschoff J K, Kaufmann S, Kalkan O, et al. In vitro bioaccessibility of carotenoids, flavonoids, and vitamin C from differently processed oranges and orange juices[Citrus sinensis(L.) Osbeck][J]. Journal of Agricultural and Food Chemistry,2015,63(2):578−587. doi: 10.1021/jf505297t
[16] Bengtsson A, Larsson Alminger M, Svanberg U. In vitro bioaccessibility of β-carotene from heat-processed orange-fleshed sweet potato[J]. Journal of Agricultural and Food Chemistry,2009,57(20):9693−9698. doi: 10.1021/jf901692r
[17] Ma T T, Lan T, Geng T H, et al. Nutritional properties and biological activities of kiwifruit (Actinidia) and kiwifruit products under simulated gastrointestinal in vitro digestion[J]. Food & Nutrition Research,2019,63:1674.
[18] Ma T T, Lan T, Ju Y L, et al. Comparison of the nutritional properties and biological activities of kiwifruit (Actinidia) and their different forms of products: Towards making kiwifruit more nutritious and functional[J]. Food & Function,2019,10(3):1317−1329.
[19] The National Standard of China, Ministry of Agriculture Notice No. 869-2-2007. Food safety detection of genetically modified organisms and derived products Method of target protein digestive stability in simulative gastric and intestinal fluid[S]. 2007.
[20] Ma T T, Sun X Y, Zhao J M, et al. Nutrient compositions and antioxidant capacity of kiwifruit (Actinidia) and their relationship with flesh color and commercial value[J]. Food Chemistry,2017,218:294−304. doi: 10.1016/j.foodchem.2016.09.081
[21] Mu T H, Tan S S, Xue Y L. The amino acid composition, solubility and emulsifying properties of sweet potato protein[J]. Food Chemistry,2009,112(4):1002−1005. doi: 10.1016/j.foodchem.2008.07.012
[22] Zhao T, Wu J Y, Meng J F, et al. Harvesting at the right time: Maturity and its effects on the aromatic characteristics of cabernet sauvignon wine[J]. Molecules (Basel, Switzerland),2019,24(15):E2777. doi: 10.3390/molecules24152777
[23] Sun X Y, Ma T T, Han L Y, et al. Effects of copper pollution on the phenolic compound content, color, and antioxidant activity of wine[J]. Molecules (Basel, Switzerland),2017,22(5):E726. doi: 10.3390/molecules22050726
[24] Lu Y H, Huang J H, Li Y C, et al. Variation in nutritional compositions, antioxidant activity and microstructure of Lycopus lucidus Turcz. root at different harvest times[J]. Food Chemistry,2015,183:91−100. doi: 10.1016/j.foodchem.2015.03.033
[25] Koczka N, Stefanovits-Bányai É, Prokaj E. Element composition, total phenolics and antioxidant activity of wild and cultivated blackberry (Rubus fruticosus L.) fruits and leaves during the harvest time[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca,2018,46(2):563−569. doi: 10.15835/nbha46210993
[26] Schulz M, Biluca F C, Gonzaga L V, et al. Bioaccessibility of bioactive compounds and antioxidant potential of juçara fruits (Euterpe edulis Martius) subjected to in vitro gastrointestinal digestion[J]. Food Chemistry,2017,228:447−454. doi: 10.1016/j.foodchem.2017.02.038
[27] Celep E, Charehsaz M, Akyüz S, et al. Effect of in vitro gastrointestinal digestion on the bioavailability of phenolic components and the antioxidant potentials of some Turkish fruit wines[J]. Food Research International (Ottawa, Ont.),2015,78:209−215. doi: 10.1016/j.foodres.2015.10.009
[28] Souza L A, Souza T L, Santana F B, et al. Determination and in vitro bioaccessibility evaluation of Ca, Cu, Fe, K, Mg, Mn, Mo, Na, P and Zn in linseed and sesame[J]. Microchemical Journal,2018,137:8−14. doi: 10.1016/j.microc.2017.09.010
[29] Suliburska J, Krejpcio Z. Evaluation of the content and bioaccessibility of iron, zinc, calcium and magnesium from groats, rice, leguminous grains and nuts[J]. Journal of Food Science and Technology,2014,51(3):589−594. doi: 10.1007/s13197-011-0535-5
[30] Ma T, Quan M, Tian C, et al. Analysis on the nutritional components of Sphallerocarpus gracilis stem leaves and flowers[J]. Acta Nutrimenta Sinica,2014,36:93−95.
[31] Sun H Q, Zhu Z Y, Tang Y L, et al. Structural characterization and antitumor activity of a novel Se-polysaccharide from selenium-enriched Cordyceps gunnii[J]. Food & Function,2018,9(5):2744−2754.
[32] Thiry C, Ruttens A, De Temmerman L, et al. Current knowledge in species-related bioavailability of selenium in food[J]. Food Chemistry,2012,130(4):767−784. doi: 10.1016/j.foodchem.2011.07.102
[33] Schwarz K, Foltz C M. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration[J]. Journal of the American Chemical Society,1957,79(12):3292−3293.
[34] Pyrzynska K. Selenium speciation in enriched vegetables[J]. Food Chemistry,2009,114(4):1183−1191. doi: 10.1016/j.foodchem.2008.11.026
[35] National Health and Family Planning Commission of China. Dietary guidelines for Chinese residents[M]. Beijing: People's Medical Publishing House(PMPH), 2016.
[36] Cai X L, Chen X C, Yin N Y, et al. Estimation of the bioaccessibility and bioavailability of Fe, Mn, Cu, and Zn in Chinese vegetables using the in vitro digestion/Caco-2 cell model: The influence of gut microbiota[J]. Food & Function,2017,8(12):4592−4600 (in Chinese).
[37] Etcheverry P, Grusak M A, Fleige L E. Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B6, B12, D, and E[J]. Frontiers in Physiology,2012,3:317.
[38] Gao C Y, Lu Y H, Tian C R, et al. Main nutrients, phenolics, antioxidant activity, DNA damage protective effect and microstructure of Sphallerocarpus gracilis root at different harvest time[J]. Food Chemistry,2011,127(2):615−622. doi: 10.1016/j.foodchem.2011.01.053
[39] Wang Y T, Li L X, Liu H, et al. Bioactive compounds and in vitro antioxidant activities of peel, flesh and seed powder of kiwi fruit[J]. International Journal of Food Science & Technology,2018,53(9):2239−2245.
[40] You L, Zhao M, Regenstein J, et al. Changes in the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates during a simulated gastrointestinal digestion[J]. Food Chemistry,2010,120:810−816. doi: 10.1016/j.foodchem.2009.11.018
[41] Morelló J R, Romero M P, Ramo T, et al. Evaluation of l-phenylalanine ammonia-lyase activity and phenolic profile in olive drupe (Olea europaea L.) from fruit setting period to harvesting time[J]. Plant Science,2005,168(1):65−72. doi: 10.1016/j.plantsci.2004.07.013
[42] Lingua M S, Wunderlin D A, Baroni M V. Effect of simulated digestion on the phenolic components of red grapes and their corresponding wines[J]. Journal of Functional Foods,2018,44:86−94. doi: 10.1016/j.jff.2018.02.034
[43] Lin L Z, Harnly J M. A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials[J]. Journal of Agricultural and Food Chemistry,2007,55(4):1084−1096. doi: 10.1021/jf062431s
[44] Lin L Z, Harnly J M. Identification of the phenolic components of Chrysanthemum flower (Chrysanthemum morifolium Ramat)[J]. Food Chemistry,2010,120(1):319−326. doi: 10.1016/j.foodchem.2009.09.083
[45] Kwon Y I, Apostolidis E, Shetty K. Inhibitory potential of wine and tea against α-amylase and α-glucosidase for management of hyperglycemia linked to type 2 diabetes[J]. Journal of Food Biochemistry,2008,32(1):15−31. doi: 10.1111/j.1745-4514.2007.00165.x
[46] Jia X Y, Zhang Q G, Zhang Z Q, et al. Hepatoprotective effects of almond oil against carbon tetrachloride induced liver injury in rats[J]. Food Chemistry,2011,125(2):673−678. doi: 10.1016/j.foodchem.2010.09.062
[47] Desai S N, Patel D K, Devkar R V, et al. Hepatoprotective potential of polyphenol rich extract of Murraya koenigii L.: An in vivo study[J]. Food and Chemical Toxicology,2012,50(2):310−314. doi: 10.1016/j.fct.2011.10.063
[48] Lu X S, Zhao Y, Sun Y F, et al. Characterisation of polysaccharides from green tea of Huangshan Maofeng with antioxidant and hepatoprotective effects[J]. Food Chemistry,2013,141(4):3415−3423. doi: 10.1016/j.foodchem.2013.06.058
[49] Chen J, Sun H N, Sun A D, et al. Studies of the protective effect and antioxidant mechanism of blueberry anthocyanins in a CC14-induced liver injury model in mice[J]. Food and Agricultural Immunology,2012,23(4):352−362. doi: 10.1080/09540105.2011.634378