• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

Variation in the Chemical Composition and Biological Activities of Sphallerocarpus gracilis Stems and Leaves among Different Harvesting Time

Shihan BAO, Yuying HE, Chun WANG, Wenna MA, Xuebing WANG, Xiangyu SUN, Tingting MA

BAO Shihan, HE Yuying, WANG Chun, et al. Variation in the Chemical Composition and Biological Activities of Sphallerocarpus gracilis Stems and Leaves among Different Harvesting Time[J]. Science and Technology of Food Industry, 2021, 42(7): 27−42. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020030315.
Citation: BAO Shihan, HE Yuying, WANG Chun, et al. Variation in the Chemical Composition and Biological Activities of Sphallerocarpus gracilis Stems and Leaves among Different Harvesting Time[J]. Science and Technology of Food Industry, 2021, 42(7): 27−42. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020030315.
鲍诗晗,何玉英,王纯,等. 不同采收期黄参茎叶化学成分及生物活性变化[J]. 食品工业科技,2021,42(7):27−42. doi: 10.13386/j.issn1002-0306.2020030315.
引用本文: 鲍诗晗,何玉英,王纯,等. 不同采收期黄参茎叶化学成分及生物活性变化[J]. 食品工业科技,2021,42(7):27−42. doi: 10.13386/j.issn1002-0306.2020030315.

Variation in the Chemical Composition and Biological Activities of Sphallerocarpus gracilis Stems and Leaves among Different Harvesting Time

More Information
    Corresponding author:

    Tingting MA: 马婷婷(1987−),女,博士,副教授,研究方向为:食品新资源开发,E-mail: matingting@nwafu.edu.cn

不同采收期黄参茎叶化学成分及生物活性变化

详细信息
  • 中图分类号: TS201.1

  • Abstract: Variations in the chemical composition and biological activities of a functional food Sphallerocarpus gracilis stems and leaves (SLSG) harvested at different time were investigated, so as to provide new information and scientific recommendations with the best biological activities for the further exploitation of this resource. The samples harvested in autumn in autumn showed higher contents of most nutrients than harvested in spring, and the samples harvested in the second year showed higher contents of most nutrients than harvested in the first year. Following in vitro GI digestion, SLSG showed a good release percentage for most elements; however, the release of amino acids, especially Trp, Gly, Pro and Glu, which showed a very low release percentage (approximately 6%~11%). Regarding polyphenols, L7G and A7O were the main phenolic substances in SLSG, and 48%~55% of TP and 40%~70% of the individual phenolic substances were observed in the serum fraction. SLSG showed a good antioxidant capacity, an inhibitory effect against α-glucosidase and a hepatoprotective effect in vitro. Polyphenols and amino acids were the main contributors to these biological activities. Harvesting time T4 showed the best results in most indexes, including contents of Ca, Zn, Cu, Se Na, P, polyphenols, antioxidant ability, inhibitory effects on α-amylase and α-glucosidase, etc. These results increased the understanding of the chemical composition and biological activities of SLSG and provided new information and scientific recommendations with the best biological activities for the further exploitation of this resource.
    摘要: 本文分析了不同采收期黄参茎叶(SLSG)的化学成分及生物活性变化,以期为该资源的进一步开发利用提供新信息和科学建议。结果表明对于SLSG中的大多数营养物质,其在秋季采收样品中的含量高于春季采收样品,在次年采收样品中的含量高于同年采收样品。通过体外模拟消化发现,SLSG对于大部分矿物元素有较好的释放率。SLSG对氨基酸的释放率,尤其是色氨酸、甘氨酸、脯氨酸和谷氨酸(约为6%~11%),略低于其他营养物质。L7G和A7O是SLSG中主要的酚类物质,并且在模拟血清吸收中检测出48%~55%的总酚和40%~70%的单体酚。SLSG具有良好的抗氧化能力、α-葡萄糖苷酶抑制作用及体外保肝作用。多酚类物质和氨基酸是这些生物活性功能的主要来源。采收期T4的大多数指标测定结果最优,包括Ca、Zn、Cu、Se、Na、P、酚类物质含量,抗氧化能力,α-淀粉酶及α-葡萄糖苷酶抑制作用等。上述结果加深了对SLSG化学成分及生物活性的认识,并且为该资源的进一步开发利用提供了新信息和科学建议。
  • Figure  1.   The flow chart of the digestion experiment

    Figure  2.   Changes in the mineral elements of S. gracilis stems and leaves with different harvest time during in vitro GI digestion

    Notes: (A):K, (B):Mg, (C):Ca, (D):Fe, (E):Zn, (F):Cu, (G):Se, (H):Mn, and (I):Na and P. Different lowercase letters showed significant differences among different harvest time at P < 0.05; different capital letters showed significant differences among the different digestion phases at P < 0.05; Different lowercase and capital letters of Table 1, Table 2, Fig.3Fig.5 had the same meaning with Fig.2.

    Figure  3.   Changes in the polyphenols of S. gracilis stems and leaves with different harvest time during in vitro GI digestion

    Notes:(A):TP;(B)HPLC chromatogram of the SLSG samples;Peak 1 L7G, peak 2 A7O, peak 3 A7OI-1, and peak 4 A7OI-2. (C):L7G, (D):A7O, (E):A7OI-1, (F):A7OI-2.

    Figure  4.   Changes in the antioxidant ability of S. gracilis stems and leaves with different harvest time during in vitro GI digestion

    Notes:(A):DPPH; (B):ABTS; (C):ORAC; (D):FRAP.

    Figure  5.   Changes in the inhibitory effects of S. gracilis stems and leaves harvested at different time on α-amylase and α-glucosidase during in vitro GI digestion

    Notes:(A): α-amylase;(B): α-glucosidase.

    Figure  6.   The hepatoprotective effect in vitro of S. gracilis stems and leaves harvested at different time during in vitro GI digestion.

    Notes: (A) Cell viability and (B) AST, ALT and AKP activities of BRL hepatocytes injured with CCl4 (X±SD; n=5). Different letters in the same column showed significant differences among different groups (P < 0.05).

    Table  1   The essential amino acid content in the SLSG samples harvested at different time during in vitro GI digestion (g/100 g DW)

    Amino acidHarvest timeRawOralStomachSerumColon
    LysT1389.23±17.09dA98.29±5.98cD122.31±7.44cC249.39±10.21dB37.48±2.09dE
    T2798.12±24.88bA211.28±12.09aD277.48±14.09aC509.09±34.13bB65.98±3.48bE
    T3443.28±28.09cA112.09±8.11bD149.09±10.49bC301.28±15.28cB44.57±3.14cE
    T4844.09±30.12aA212.19±10.09aD287.09±22.47aC568.09±34.87aB72.09±4.75aE
    TrpT120.09±0.98dA1.81±0.22dC2.03±0.12dC2.98±0.23dB0.98±0.09dD
    T235.11±2.11bA3.09±0.09bD3.48±0.18bC4.43±0.32bB1.23±0.12cE
    T327.12±2.22cA2.33±0.18cD2.87±0.19cC3.48±0.21cB1.42±0.11bE
    T440.98±3.09aA3.57±0.13aD4.01±0.33aC5.78±0.34aB2.38±0.18aE
    PheT1387.09±17.09cA122.98±8.09cD287.49±21.09cB245.98±11.78dC67.49±4.78cD
    T2757.12±26.09bA233.18±21.09bD572.38±34.78bB500.98±23.76bC109.09±7.87bD
    T3400.12±18.89cA134.28±12.09cD309.17±16.09cB275.09±13.87cC75.98±6.76cD
    T4819.29±44.09aA264.31±18.09aD617.09±34.09aB566.97±13.09aC130.98±11.67aD
    MetT1156.49±7.28cA75.41±2.43cD80.98±3.21cC89.37±4.58cB10.48±0.78cE
    T2178.12±10.24bA92.38±3.22bD98.87±3.09bC112.48±5.09bB14.37±1.09bE
    T3177.48±5.98bA95.42±3.19bC99.86±3.28bC118.41±6.54bB19.47±1.15aD
    T4193.09±5.55aA102.38±2.98aD106.65±2.34aC130.28±3.45aB14.64±1.34bE
    ThrT1344.29±20.38dA118.22±7.09dC93.27±4.09cD140.38±10.53dB44.37±2.48bE
    T2631.04±28.47bA199.47±10.44bC167.59±9.09bD248.87±14.57bB72.48±4.33aE
    T3398.09±28.38cA139.09±8.48cC100.23±5.68cD166.47±8.58cB38.47±2.09cE
    T4703.47±30.98aA238.48±12.49aC201.37±12.45aD287.47±17.28aB77.47±4.33aE
    IleT1231.09±14.28dA37.18±2.38cD48.38±2.98dC76.49±4.09dB23.09±2.38cE
    T2381.42±22.89bA65.48±2.22bD79.48±3.88bC122.39±8.77bB39.48±2.43aE
    T3288.48±17.28cA57.58±4.09cC55.48±2.09cC107.09±5.09cB27.33±1.98bD
    T4443.09±23.22aA78.09±2.47aD97.28±3.89aC139.48±7.04aB39.48±3.09aE
    LeuT1412.38±14.48dA159.09±10.44dD277.38±20.45dC337.09±18.39dB39.47±1.09cE
    T2676.71±32.09bA239.01±19.42cD429.09±25.58bC534.06±22.98bB65.58±2.98bE
    T3588.47±17.38cA218.48±17.09cD377.98±30.75cC467.14±23.09cB69.48±3.21bE
    T4748.58±30.41aA288.47±17.34aD453.47±22.49aC609.48±19.38aB85.42±3.92aE
    ValT1409.33±30.09dA105.58±5.48dD132.09±4.58dC158.49±8.59dB40.09±3.28cE
    T2681.42±38.98bA189.48±7.09bD223.41±9.28bC287.57±14.28bB58.49±3.09bE
    T3499.58±28.31cA129.24±5.44cD174.28±10.49cC208.92±20.48cB60.91±3.98bE
    T4808.21±43.28aA217.42±9.48aD248.97±8.98aC338.56±23.41aB89.47±5.58aE
    TEAT12349.99±121.67dA718.56±42.11dD1043.93±63.96dC1300.17±68.40dB263.45±16.97dE
    T24139.06±185.7bA1233.37±75.66bD1851.78±99.97bC2319.87±123.90bB426.70±25.39bE
    T32822.62±146.53cA888.51±58.67cD1268.96±79.06cC1647.88±93.14cB337.63±22.42cE
    T44600.80±210.74aA1404.91±73.07aD2015.93±107.04aC2646.11±118.86aB511.93±34.86aE
    Note: SLSG: Stems and leaves of Sphallerocarpus gracilis; TEA: Total essential amino acids. Table 2 was the same.
    下载: 导出CSV

    Table  2   The nonessential amino acid content in SLSG samples harvested at different times during in vitro GI digestion (g/100 g DW)

    Amino acidHarvest timeRawOralStomachSerumColon
    TyrT1701.27±10.09bA187.28±8.98aD204.48±10.09bC298.76±13.29aB89.87±4.38bE
    T2725.17±28.81abA199.21±13.09aC211.28±18.28abC309.97±22.09aB92.09±3.09bD
    T3737.09±28.47aA209.18±15.48aC233.57±15.49aC320.91±25.47aB84.38±4.41cD
    T4711.23±8.87bA202.09±13.28aD227.09±13.89aC316.27±22.38aB98.11±3.98aE
    AspT11374.31±87.39dA278.87±18.28dD319.28±28.38dC564.87±37.19dB129.74±7.47dE
    T22239.09±110.28bA468.76±22.38bD558.41±34.09bC908.49±40.21bB293.47±12.38bE
    T31588.47±73.98cA328.17±17.09cD365.09±28.38cC698.41±22.09cB198.38±10.92cE
    T42980.19±109.38aA633.28±36.47aD709.28±38.77aC1272.09±78.88aB322.09±14.87aE
    SerT1566.38±29.38dA141.29±7.98cD154.87±10.22cC249.09±8.09dB78.09±3.98dE
    T2792.09±22.09bA202.09±11.09bC212.31±13.28bC349.18±19.28bB112.44±8.87bD
    T3644.31±10.09cA138.98±8.09cD162.09±10.23cC288.47±18.28cB89.02±4.47cE
    T4904.87±20.87aA218.29±13.09aC230.47±13.44aC431.09±28.09aB127.48±5.81aD
    GlyT1550.47±38.09dA61.98±3.28cC65.44±5.31cC80.98±3.29bB43.09±3.01bD
    T2647.36±20.87bA70.39±2.98bC74.09±6.09bC88.09±3.97aB39.28±2.09cD
    T3612.37±19.27cA68.27±4.38bD75.49±2.02bC84.18±4.31bB39.01±2.11cE
    T4739.07±23.28aA79.87±4.99aC83.29±2.98aC92.91±3.21aB48.28±3.88aD
    HisT1258.87±10.21aA65.49±3.09cD85.49±4.21bC109.28±2.98aB31.09±1.98bE
    T2273.78±23.19aA77.38±2.01bD93.48±2.18aC102.31±3.11bB38.29±2.44aE
    T3260.18±20.18aA68.92±3.21cC95.09±5.41aB97.19±2.09cB28.22±1.98cD
    T4270.98±23.19aA83.27±3.92aD88.48±2.09bC105.37±3.24abB30.91±3.29bE
    ProT1609.27±39.09dA35.47±2.19cD49.18±2.37dC63.29±2.18dB35.21±3.09cD
    T21002.39±30.14bA76.29±3.18bD87.49±3.19bC99.09±6.98bB40.19±3.18aE
    T3710.28±28.91cA55.38±3.09cD63.48±2.19cC83.28±4.49cB38.18±3.48cE
    T41098.09±34.18aA80.29±6.38aD90.41±4.58aC101.21±7.09aB42.19±2.89aE
    AlaT11389.09±43.19dA578.18±29.34dD639.18±29.48dC981.28±44.03bB198.49±8.38cE
    T21567.48±39.04bA676.19±30.48bD749.19±34.09bC1048.29±59.48bB219.48±12.34abE
    T31477.67±29.38cA622.41±33.18cD701.28±19.28cC1010.48±49.28bB203.48±19.48bE
    T41687.28±50.49aA770.49±40.39aD838.09±23.42aC1147.49±29.48aB233.14±18.29aE
    GluT1982.09±49.58dA109.21±3.19dD148.39±8.09dC199.09±9.28dB87.19±4.29dE
    T22035.38±104.28bA221.09±11.41bD331.08±15.39bC439.18±22.49bB177.09±5.29bE
    T31366.27±88.49cA154.27±8.91cD218.21±10.21cC279.19±5.41cB112.04±4.98cE
    T42356.87±149.51aA265.48±14.09aD378.29±18.41aC479.09±14.21aB201.48±7.08aE
    CysT1133.28±4.81cC25.12±1.09bD31.47±2.09cC41.28±2.48bB11.21±0.87bE
    T2154.38±7.09abA31.09±2.11aD38.91±1.43bC47.58±2.33aB10.09±1.21bE
    T3147.09±4.11bA32.17±2.87aD41.28±2.04aC42.81±1.58bB13.18±1.45aE
    T4160.28±3.98aA34.18±2.34aD39.18±2.11aC49.21±2.41aB14.09±1.09aE
    ArgT1377.48±18.27dA132.15±8.11dD158.04±7.09dC219.09±12.09dB37.84±2.48cE
    T2482.18±22.08bA176.09±4.09bD199.74±10.38bC301.28±15.86bB49.88±3.99bE
    T3429.09±17.18cA148.09±3.98cD179.28±7.58cC254.87±15.22cB54.98±2.09aE
    T4512.01±23.81aA201.98±6.88aD221.09±13.19aC287.98±8.09aB56.18±4.58aE
    TAAT19292.50±451.77dA2333.60±127.64dD2899.75±171.29dC4107.18±203.30dB1005.27±56.90dE
    T214058.36±593.62bA3431.95±178.48bD4407.76±238.37bC6013.33±319.70bB1499.00±80.27bE
    T310795.44±466.59cA2714.35±158.95cD3403.82±181.89cC4807.67±241.36cB1198.50±77.79cE
    T416021.67±658.30aA3974.13±214.90aD4921.60±239.92aC6928.82±315.94aB1685.88±100.62aE
    TEA/TAA(%)T125.2930.7936.0031.6626.21
    T229.4435.9442.0138.5828.47
    T326.1532.7337.2834.2828.17
    T428.7235.3540.9638.1930.37
    Note: TAA: Total amino acid.
    下载: 导出CSV

    Table  3   Mass spectral data and contents of the phenolic compounds identified in the SLSG

    PeakRt (min)MWMS (m/z)MS2 (m/z)Identified compounds
    130.66448447 [M−H]285Luteolin-7-O-glucoside
    239.44490489 [M−H]285Acacetin-7-O-acetyglycoside
    341.79490489 [M−H]285Acacetin-7-O-acetyglycoside isomer 1
    448.87490489 [M−H]285Acacetin-7-O-acetyglycoside isomer 2
    下载: 导出CSV
  • [1]

    Ma T T, Sun X Y, Tian C R, et al. Enrichment and purification of polyphenol extract from Sphallerocarpus gracilis stems and leaves and in vitro evaluation of DNA damage-protective activity and inhibitory effects of α-amylase and α-glucosidase[J]. Molecules (Basel, Switzerland),2015,20(12):21442−21457. doi: 10.3390/molecules201219780

    [2]

    Gao C Y, Tian C R, Zhou R, et al. Phenolic composition, DNA damage protective activity and hepatoprotective effect of free phenolic extract from Sphallerocarpus gracilis seeds[J]. International Immunopharmacology,2014,20(1):238−247. doi: 10.1016/j.intimp.2014.03.002

    [3]

    Guo J, Wang J L, Song S, et al. Sphallerocarpus gracilis polysaccharide protects pancreaticβ-cells via regulation of the bax/bcl-2, caspase-3, pdx-1 and insulin signalling pathways[J]. International Journal of Biological Macromolecules,2016,93(Pt A):829−836.

    [4]

    Gao C, Tian C, Lu Y, et al. Essential oil composition and antimicrobial activity of Sphallerocarpus gracilis seeds against selected food-related bacteria[J]. Food Control,2011,22:508−516. doi: 10.1016/j.foodcont.2010.09.037

    [5]

    Ma T T, Sun X Y, Tian C R, et al. Chemical composition and hepatoprotective effects of polyphenols extracted from the stems and leaves of Sphallerocarpus gracilis[J]. Journal of Functional Foods,2015,18:673−683. doi: 10.1016/j.jff.2015.09.001

    [6]

    Xu Y F, Song S, Wei Y X, et al. Sulfated modification of the polysaccharide from Sphallerocarpus gracilis and its antioxidant activities[J]. International Journal of Biological Macromolecules,2016,87:180−190. doi: 10.1016/j.ijbiomac.2016.02.037

    [7]

    Ma T T, Sun X Y, Tian C R, et al. Polysaccharide extraction from Sphallerocarpus gracilis roots by response surface methodology[J]. International Journal of Biological Macromolecules,2016,88:162−170. doi: 10.1016/j.ijbiomac.2016.03.058

    [8]

    Konakchiev A, Shatar S, Altantsetseg S, et al. The essential oil of Sphallerocarpus gracilis(Bess ex Trev) K-pol from outer Mongolian Gobi[J]. Journal of Essential Oil Bearing Plants,2010,13(5):575−578. doi: 10.1080/0972060X.2010.10643865

    [9]

    Shi M R, Pe D, Liu J X, et al. Chemical constituents from Sphallerocarpus gracilis[J]. Biochemical Systematics and Ecology,2012,40:1−3. doi: 10.1016/j.bse.2011.09.008

    [10]

    Celep E, Akyüz S, İnan Y, et al. Assessment of potential bioavailability of major phenolic compounds in Lavandula stoechas L. ssp. stoechas[J]. Industrial Crops and Products,2018,118:111−117. doi: 10.1016/j.indcrop.2018.03.041

    [11]

    Minekus M, Alminger M, Alvito P, et al. A standardised static in vitro digestion method suitable for food-an international consensus[J]. Food & Function,2014,5(6):1113−1124.

    [12]

    Alminger M, Aura A M, Bohn T, et al. In vitro models for studying secondary plant metabolite digestion and bioaccessibility[J]. Comprehensive Reviews in Food Science and Food Safety,2014,13(4):413−436. doi: 10.1111/1541-4337.12081

    [13]

    Chen G L, Chen S G, Zhao Y Y, et al. Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion[J]. Industrial Crops and Products,2014,57:150−157. doi: 10.1016/j.indcrop.2014.03.018

    [14]

    Lucas-Gonzalez R, Navarro-Coves S, Pérez-Álvarez J A, et al. Assessment of polyphenolic profile stability and changes in the antioxidant potential of maqui berry (Aristotelia chilensis (Molina) Stuntz) during in vitro gastrointestinal digestion[J]. Industrial Crops and Products,2016,94:774−782. doi: 10.1016/j.indcrop.2016.09.057

    [15]

    Aschoff J K, Kaufmann S, Kalkan O, et al. In vitro bioaccessibility of carotenoids, flavonoids, and vitamin C from differently processed oranges and orange juices[Citrus sinensis(L.) Osbeck][J]. Journal of Agricultural and Food Chemistry,2015,63(2):578−587. doi: 10.1021/jf505297t

    [16]

    Bengtsson A, Larsson Alminger M, Svanberg U. In vitro bioaccessibility of β-carotene from heat-processed orange-fleshed sweet potato[J]. Journal of Agricultural and Food Chemistry,2009,57(20):9693−9698. doi: 10.1021/jf901692r

    [17]

    Ma T T, Lan T, Geng T H, et al. Nutritional properties and biological activities of kiwifruit (Actinidia) and kiwifruit products under simulated gastrointestinal in vitro digestion[J]. Food & Nutrition Research,2019,63:1674.

    [18]

    Ma T T, Lan T, Ju Y L, et al. Comparison of the nutritional properties and biological activities of kiwifruit (Actinidia) and their different forms of products: Towards making kiwifruit more nutritious and functional[J]. Food & Function,2019,10(3):1317−1329.

    [19]

    The National Standard of China, Ministry of Agriculture Notice No. 869-2-2007. Food safety detection of genetically modified organisms and derived products Method of target protein digestive stability in simulative gastric and intestinal fluid[S]. 2007.

    [20]

    Ma T T, Sun X Y, Zhao J M, et al. Nutrient compositions and antioxidant capacity of kiwifruit (Actinidia) and their relationship with flesh color and commercial value[J]. Food Chemistry,2017,218:294−304. doi: 10.1016/j.foodchem.2016.09.081

    [21]

    Mu T H, Tan S S, Xue Y L. The amino acid composition, solubility and emulsifying properties of sweet potato protein[J]. Food Chemistry,2009,112(4):1002−1005. doi: 10.1016/j.foodchem.2008.07.012

    [22]

    Zhao T, Wu J Y, Meng J F, et al. Harvesting at the right time: Maturity and its effects on the aromatic characteristics of cabernet sauvignon wine[J]. Molecules (Basel, Switzerland),2019,24(15):E2777. doi: 10.3390/molecules24152777

    [23]

    Sun X Y, Ma T T, Han L Y, et al. Effects of copper pollution on the phenolic compound content, color, and antioxidant activity of wine[J]. Molecules (Basel, Switzerland),2017,22(5):E726. doi: 10.3390/molecules22050726

    [24]

    Lu Y H, Huang J H, Li Y C, et al. Variation in nutritional compositions, antioxidant activity and microstructure of Lycopus lucidus Turcz. root at different harvest times[J]. Food Chemistry,2015,183:91−100. doi: 10.1016/j.foodchem.2015.03.033

    [25]

    Koczka N, Stefanovits-Bányai É, Prokaj E. Element composition, total phenolics and antioxidant activity of wild and cultivated blackberry (Rubus fruticosus L.) fruits and leaves during the harvest time[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca,2018,46(2):563−569. doi: 10.15835/nbha46210993

    [26]

    Schulz M, Biluca F C, Gonzaga L V, et al. Bioaccessibility of bioactive compounds and antioxidant potential of juçara fruits (Euterpe edulis Martius) subjected to in vitro gastrointestinal digestion[J]. Food Chemistry,2017,228:447−454. doi: 10.1016/j.foodchem.2017.02.038

    [27]

    Celep E, Charehsaz M, Akyüz S, et al. Effect of in vitro gastrointestinal digestion on the bioavailability of phenolic components and the antioxidant potentials of some Turkish fruit wines[J]. Food Research International (Ottawa, Ont.),2015,78:209−215. doi: 10.1016/j.foodres.2015.10.009

    [28]

    Souza L A, Souza T L, Santana F B, et al. Determination and in vitro bioaccessibility evaluation of Ca, Cu, Fe, K, Mg, Mn, Mo, Na, P and Zn in linseed and sesame[J]. Microchemical Journal,2018,137:8−14. doi: 10.1016/j.microc.2017.09.010

    [29]

    Suliburska J, Krejpcio Z. Evaluation of the content and bioaccessibility of iron, zinc, calcium and magnesium from groats, rice, leguminous grains and nuts[J]. Journal of Food Science and Technology,2014,51(3):589−594. doi: 10.1007/s13197-011-0535-5

    [30]

    Ma T, Quan M, Tian C, et al. Analysis on the nutritional components of Sphallerocarpus gracilis stem leaves and flowers[J]. Acta Nutrimenta Sinica,2014,36:93−95.

    [31]

    Sun H Q, Zhu Z Y, Tang Y L, et al. Structural characterization and antitumor activity of a novel Se-polysaccharide from selenium-enriched Cordyceps gunnii[J]. Food & Function,2018,9(5):2744−2754.

    [32]

    Thiry C, Ruttens A, De Temmerman L, et al. Current knowledge in species-related bioavailability of selenium in food[J]. Food Chemistry,2012,130(4):767−784. doi: 10.1016/j.foodchem.2011.07.102

    [33]

    Schwarz K, Foltz C M. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration[J]. Journal of the American Chemical Society,1957,79(12):3292−3293.

    [34]

    Pyrzynska K. Selenium speciation in enriched vegetables[J]. Food Chemistry,2009,114(4):1183−1191. doi: 10.1016/j.foodchem.2008.11.026

    [35]

    National Health and Family Planning Commission of China. Dietary guidelines for Chinese residents[M]. Beijing: People's Medical Publishing House(PMPH), 2016.

    [36]

    Cai X L, Chen X C, Yin N Y, et al. Estimation of the bioaccessibility and bioavailability of Fe, Mn, Cu, and Zn in Chinese vegetables using the in vitro digestion/Caco-2 cell model: The influence of gut microbiota[J]. Food & Function,2017,8(12):4592−4600 (in Chinese).

    [37]

    Etcheverry P, Grusak M A, Fleige L E. Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B6, B12, D, and E[J]. Frontiers in Physiology,2012,3:317.

    [38]

    Gao C Y, Lu Y H, Tian C R, et al. Main nutrients, phenolics, antioxidant activity, DNA damage protective effect and microstructure of Sphallerocarpus gracilis root at different harvest time[J]. Food Chemistry,2011,127(2):615−622. doi: 10.1016/j.foodchem.2011.01.053

    [39]

    Wang Y T, Li L X, Liu H, et al. Bioactive compounds and in vitro antioxidant activities of peel, flesh and seed powder of kiwi fruit[J]. International Journal of Food Science & Technology,2018,53(9):2239−2245.

    [40]

    You L, Zhao M, Regenstein J, et al. Changes in the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates during a simulated gastrointestinal digestion[J]. Food Chemistry,2010,120:810−816. doi: 10.1016/j.foodchem.2009.11.018

    [41]

    Morelló J R, Romero M P, Ramo T, et al. Evaluation of l-phenylalanine ammonia-lyase activity and phenolic profile in olive drupe (Olea europaea L.) from fruit setting period to harvesting time[J]. Plant Science,2005,168(1):65−72. doi: 10.1016/j.plantsci.2004.07.013

    [42]

    Lingua M S, Wunderlin D A, Baroni M V. Effect of simulated digestion on the phenolic components of red grapes and their corresponding wines[J]. Journal of Functional Foods,2018,44:86−94. doi: 10.1016/j.jff.2018.02.034

    [43]

    Lin L Z, Harnly J M. A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials[J]. Journal of Agricultural and Food Chemistry,2007,55(4):1084−1096. doi: 10.1021/jf062431s

    [44]

    Lin L Z, Harnly J M. Identification of the phenolic components of Chrysanthemum flower (Chrysanthemum morifolium Ramat)[J]. Food Chemistry,2010,120(1):319−326. doi: 10.1016/j.foodchem.2009.09.083

    [45]

    Kwon Y I, Apostolidis E, Shetty K. Inhibitory potential of wine and tea against α-amylase and α-glucosidase for management of hyperglycemia linked to type 2 diabetes[J]. Journal of Food Biochemistry,2008,32(1):15−31. doi: 10.1111/j.1745-4514.2007.00165.x

    [46]

    Jia X Y, Zhang Q G, Zhang Z Q, et al. Hepatoprotective effects of almond oil against carbon tetrachloride induced liver injury in rats[J]. Food Chemistry,2011,125(2):673−678. doi: 10.1016/j.foodchem.2010.09.062

    [47]

    Desai S N, Patel D K, Devkar R V, et al. Hepatoprotective potential of polyphenol rich extract of Murraya koenigii L.: An in vivo study[J]. Food and Chemical Toxicology,2012,50(2):310−314. doi: 10.1016/j.fct.2011.10.063

    [48]

    Lu X S, Zhao Y, Sun Y F, et al. Characterisation of polysaccharides from green tea of Huangshan Maofeng with antioxidant and hepatoprotective effects[J]. Food Chemistry,2013,141(4):3415−3423. doi: 10.1016/j.foodchem.2013.06.058

    [49]

    Chen J, Sun H N, Sun A D, et al. Studies of the protective effect and antioxidant mechanism of blueberry anthocyanins in a CC14-induced liver injury model in mice[J]. Food and Agricultural Immunology,2012,23(4):352−362. doi: 10.1080/09540105.2011.634378

图(6)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-23
  • 网络出版日期:  2021-01-27
  • 刊出日期:  2021-03-31

目录

    /

    返回文章
    返回
    x 关闭 永久关闭