• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

好食脉孢霉发酵麦麸制备可溶性膳食纤维及其理化性质

许锡凯, 辛嘉英, 任佳欣, 韩烨, 王广交, 崔添玉

许锡凯, 辛嘉英, 任佳欣, 韩烨, 王广交, 崔添玉. 好食脉孢霉发酵麦麸制备可溶性膳食纤维及其理化性质[J]. 食品工业科技, 2021, 42(2): 170-176,191. DOI: 10.13386/j.issn1002-0306.2020030170
引用本文: 许锡凯, 辛嘉英, 任佳欣, 韩烨, 王广交, 崔添玉. 好食脉孢霉发酵麦麸制备可溶性膳食纤维及其理化性质[J]. 食品工业科技, 2021, 42(2): 170-176,191. DOI: 10.13386/j.issn1002-0306.2020030170
XU Xikai, XIN Jiaying, REN Jiaxin, HAN Ye, WANG Guangjiao, CUI Tianyu. Preparation and Physicochemical Properties of Soluble Dietary Fiber(SDF)from Wheat Bran Fermented by Neurospora sitophila[J]. Science and Technology of Food Industry, 2021, 42(2): 170-176,191. DOI: 10.13386/j.issn1002-0306.2020030170
Citation: XU Xikai, XIN Jiaying, REN Jiaxin, HAN Ye, WANG Guangjiao, CUI Tianyu. Preparation and Physicochemical Properties of Soluble Dietary Fiber(SDF)from Wheat Bran Fermented by Neurospora sitophila[J]. Science and Technology of Food Industry, 2021, 42(2): 170-176,191. DOI: 10.13386/j.issn1002-0306.2020030170

好食脉孢霉发酵麦麸制备可溶性膳食纤维及其理化性质

基金项目: 

山西省优秀人才科技创新项目(201705D211029);中央财政支持地方高校发展资金高水平人才项目(304017)。

详细信息
    作者简介:

    许锡凯(1995-),男,硕士研究生,研究方向:农产品加工及贮藏工程,E-mail:892151581@qq.com。

    通讯作者:

    辛嘉英(1966-),男,博士,教授,研究方向:生物催化与生物转化,E-mail:xinjiayingvip@163.com。

  • 中图分类号: TS210.1

Preparation and Physicochemical Properties of Soluble Dietary Fiber(SDF)from Wheat Bran Fermented by Neurospora sitophila

  • 摘要: 采用好食脉孢霉对小麦麸皮进行固态发酵制备可溶性膳食纤维(Soluble dietary fiber,SDF),通过单因素结合响应面法Box-Behnken探究发酵过程中含水量、接种量、发酵温度、发酵时间对可溶性膳食纤维得率的影响,确定培养基的最佳发酵条件。同时对发酵过程中纤维素酶活性和木聚糖酶活性进行测定,并研究发酵前后SDF的理化性质。结果表明:当发酵温度为29℃、接种量为11%(v/w)、含水量为74%(v/w)、发酵时间为83.5 h时SDF得率最高,为13.41%,比发酵前提高了1.05倍。发酵过程中纤维素酶活性与木聚糖酶活性均与SDF得率呈正相关。发酵后SDF溶解性、吸附葡萄糖能力、吸附胆固醇能力(pH=2和pH=7)和DPPH清除能力比发酵前分别提高了1.14、1.76、5.36、4.61和1.62倍,为麦麸SDF作为食品添加剂提供理论基础。
    Abstract: Soluble dietary fiber(SDF)was prepared by solid fermentation of wheat bran by Neurospora sitophila. The effect of water content,inoculation amount,fermentation temperature and time on SDF yield of wheat bran were studied by the single factor combined with response surface method and the optimum fermentation conditions were obtained. Meanwhile,the activities of cellulase and xylanase in the fermentation process were determined,and the physical and chemical properties of wheat bran SDF were studied. The results showed that the optimum fermentation temperature was 29 ℃,the optimum inoculation amount was 11%(v/w),the optimum water content was 74%(v/w),the optimum fermentation time was 83.5 h and 13.41% SDF was extracted,which was 1.05 times higher than that of un-fermented wheat bran. The activities of cellulase and xylanase were positively correlated with the yield of SDF during the fermentation process. After fermentation,solubility,glucose adsorption ability,cholesterol adsorption ability(pH=2 and pH=7)and DPPH scavenging ability of wheat bran SDF were increased by 1.14,1.76,5.36,4.61 and 1.62 times respectively. These results provided a theoretical basis for wheat bran SDF as a food additive.
  • [1] 姚慧慧,王燕,赵传文.小麦麸皮膳食纤维及其在食品中的应用研究进展[J].粮食与油脂,2018,31(10):10-12.
    [2] 姚慧慧,王燕,孙子钦,等.响应面法优化小麦麸皮可溶性膳食纤维的提取工艺[J].粮食与油脂,2018,31(9):29-33.
    [3]

    Chawla R,Patil G R.Soluble dietary fiber[J].Comprehensive Reviews in Food Science and Food Safety,2010,9(2):178-196.

    [4]

    Seidner D L,Lashner B A,Brzezinski A,et al.An oral supplement enriched with fish oil,soluble fiber,and antioxidants for corticosteroid sparing in ulcerative colitis:A randomized,controlled trial[J].Clinical Gastroenterology and Hepatology,2005,3(4):358-369.

    [5] 陶春生,王克俭,谷渤海.挤压改性麦麸膳食纤维对饺子皮品质的影响[J].中国食品学报,2020,20(1):172-176.
    [6]

    Bahukhandi A,Dhyani P,Bhatt I D,et al.Variation in polyphenolics and antioxidant activity of traditional apple cultivars from west himalaya,uttarakhand[J].Horticultural Plant Journal,2018,4(4):151-157.

    [7] 赵静,汤彩云,黎鹏,等.白灵菇固体发酵优化小麦麸皮抗氧化性能[J].江苏科技大学学报(自然科学版),2019,33(5):97-103.
    [8]

    Perkins D D,Davis R H.Evidence for safety of NeurosporaSpecies for academic and commercial uses[J].Applied and Environmental Microbiology,2000,66(12):5107-5109.

    [9]

    Solomons G L. Submerged culture production of mycelial biomass[J]. Filamentous Fungi,1975,1(360):249-264.

    [10]

    Beuchat L R,Basha S M M.Protease production by the ontjom fungus,Neurospora sitophila[J].European Journal of Applied Microbiology,1976,2(3):195-203.

    [11]

    Deng Y P,Xin J Y,Liu X L,et al.Optimization of culture conditions and medium composition for the synthesis of xylanase by resting Neurospora sitophila cells:Analysis of the effects of sugars on xylanase production using the resting cell[J].Journal of Biobased Materials and Bioenergy,2017,11(6):553-561.

    [12]

    Oguntimein G,Vlach D,Moo-Young M.Production of cellulolytic enzymes by Neurospora sitophila grown on cellulosic materials[J].Bioresource Technology,1992,39(3):277-283.

    [13] 邓永平,艾瑞波,马占春,等.好食脉孢菌固体发酵产植酸酶条件的优化[J].黑龙江畜牧兽医,2017(15):148-151.
    [14] 凌阿静,杨静,李小平,等.真菌固态发酵制备麦麸可溶性膳食纤维的研究[J].安徽农业科学,2015,43(17):296-298.
    [15] 闵钟熳,贾笑雨,解铁民,等.微生物发酵法提取米糠粕中可溶性膳食纤维的研究[J].中国酿造,2017,36(8):53-56.
    [16] 赵玉萍,杨娟.四种纤维素酶酶活测定方法的比较[J].食品研究与开发,2006,27(3):116-118.
    [17] 李彩霞,房桂干,刘书钗.木聚糖酶酶活的具体测定方法[J].林产化工通讯,2001,35(1):20-23.
    [18] 徐广超.豆渣可溶性膳食纤维的制备及功能性的研究[D].无锡:江南大学,2005.
    [19] 欧仕益,郑妍,刘子立,等.酵解和酶解麦麸吸附脂肪和胆固醇的研究[J].食品科技,2005,30(1):91-93.
    [20]

    Peerajit P,Chiewchan N,Devahastin S.Effects of pretreatment methods on health-related functional properties of high dietary fibre powder from lime residues[J].Food Chemistry,2012,132(4):1891-1898.

    [21] 薛山.超声波辅助酶法提取‘蜜本南瓜’水不溶性膳食纤维工艺优化及理化性质测定[J].中国瓜菜,2019,32(10):18-25.
    [22] 潘进权,刘玉婷,刘夏婷.毛霉发酵豆粕工艺条件的优化[J].食品科学,2015,36(23):178-182.
    [23] 姜晓阳,胡迎芬,郑靖义,等.混菌固态发酵花生粕的工艺优化[J].食品工业科技,2019,40(22):120-124.
    [24] 闵钟熳,高路,高育哲,等.黑曲霉发酵法制备米糠粕可溶性膳食纤维工艺优化及其理化分析[J].食品科学,2018,39(2):112-118.
    [25] 王岸娜,朱海兰,吴立根,等.膳食纤维的功能、改性及应用[J].河南工业大学学报(自然科学版),2009,30(2):89-94.
    [26]

    Saha B C.Hemicellulose bioconversion[J].Journal of Industrial Microbiology and Biotechnology,2003,30(5):279-291.

    [27] 杨婧.膳食纤维的改性及应用研究[D].南昌:南昌大学,2012.
    [28] 张荣,任清,罗宇.小米可溶性膳食纤维提取及其理化性质分析[J].食品科学,2014,35(2):69-74.
    [29] 李艳,张海芳,韩育梅,等.复合酶法提高马铃薯渣中可溶性膳食纤维含量的研究[J].食品科技,2018,43(12):206-212.
    [30] 包怡红,冯雁波.响应面试验优化红松松仁膳食纤维制备工艺及其理化性质分析[J].食品科学,2016,37(14):11-17.
    [31] 闫晓光,张宁,高辰,等.挤压小麦麦麸提取膳食纤维工艺及性质研究[J].食品研究与开发,2013,34(24):157-161.
    [32]

    Zhu Y,Chu J X,Lu Z X,et al.Physicochemical and functional properties of dietary fiber from foxtail millet(Setaria italic)bran[J].Journal of Cereal Science,2018,79:456-461.

  • 期刊类型引用(10)

    1. 张凯歌,江迪,万小乐,关二旗,李萌萌,陈蒙慧,唐浩洁,卞科. 微生物固态发酵麦麸的营养品质及其资源化利用的研究进展. 食品与发酵工业. 2024(04): 337-346 . 百度学术
    2. 王孟阳,冯茵茵,李荣超,孟梦. 藤椒籽粕固态发酵生产可溶性膳食纤维工艺优化及其免疫活性研究. 食品科技. 2024(06): 270-277 . 百度学术
    3. 胡中原,曹杨,王月慧. 酵母菌发酵对脱脂米糠理化特性的影响. 粮食与油脂. 2024(12): 49-55 . 百度学术
    4. 田心怡,吴娜娜,杨积鹏,刘建福,谭斌. 谷物膳食纤维改性方法及其在食品中的应用研究进展. 中国粮油学报. 2023(01): 194-202 . 百度学术
    5. 肖连冬,于海彦,李慧星. 灵芝固态发酵麦糟制备可溶性膳食纤维工艺优化. 中国酿造. 2023(07): 185-189 . 百度学术
    6. 李燕华,李力,田潇凌,黄芮,马森. 菌酶协同改性麸皮对重组全麦粉及其挂面品质的影响. 轻工学报. 2023(06): 18-27 . 百度学术
    7. 赵文婧,陈立英. 谷子可溶性膳食纤维的理化性质、结构表征及对7种肠道菌群体外生长的影响. 中国食品学报. 2022(09): 92-102 . 百度学术
    8. 王璐瑶,张笃芹,牛猛,谭斌. 固态发酵对藜麦营养成分、酚类物质含量及抗氧化活性的影响. 食品工业科技. 2022(24): 130-138 . 本站查看
    9. 张笃芹,谭斌,汪丽萍,叶彦均. 小麦麸皮固态发酵的研究应用现状. 粮油食品科技. 2021(04): 201-210 . 百度学术
    10. 许祯毅,李力,姜咸彪,范俐. 响应面法优化碱法提取啤酒糟中可溶性膳食纤维的工艺研究. 食品研究与开发. 2021(17): 75-80 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  352
  • HTML全文浏览量:  49
  • PDF下载量:  18
  • 被引次数: 16
出版历程
  • 收稿日期:  2020-03-15
  • 网络出版日期:  2021-01-20
  • 刊出日期:  2021-01-14

目录

    /

    返回文章
    返回
    x 关闭 永久关闭