• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

近红外光谱法快速测定藜麦籽粒粗蛋白含量

赵丽华, 巩元勇, 张洁, 林长彬, 王颖, 李学武, 代寻, 蒋云

赵丽华, 巩元勇, 张洁, 林长彬, 王颖, 李学武, 代寻, 蒋云. 近红外光谱法快速测定藜麦籽粒粗蛋白含量[J]. 食品工业科技, 2020, 41(15): 233-236,243. DOI: 10.13386/j.issn1002-0306.2020.15.036
引用本文: 赵丽华, 巩元勇, 张洁, 林长彬, 王颖, 李学武, 代寻, 蒋云. 近红外光谱法快速测定藜麦籽粒粗蛋白含量[J]. 食品工业科技, 2020, 41(15): 233-236,243. DOI: 10.13386/j.issn1002-0306.2020.15.036
ZHAO Li-hua, GONG Yuan-yong, ZHANG Jie, LIN Chang-bin, WANG Ying, LI Xue-wu, DAI Xun, JIANG Yun. Rapid Determination of Quinoa Seeds Crude Protein Content Using Near Infrared Spectroscopy[J]. Science and Technology of Food Industry, 2020, 41(15): 233-236,243. DOI: 10.13386/j.issn1002-0306.2020.15.036
Citation: ZHAO Li-hua, GONG Yuan-yong, ZHANG Jie, LIN Chang-bin, WANG Ying, LI Xue-wu, DAI Xun, JIANG Yun. Rapid Determination of Quinoa Seeds Crude Protein Content Using Near Infrared Spectroscopy[J]. Science and Technology of Food Industry, 2020, 41(15): 233-236,243. DOI: 10.13386/j.issn1002-0306.2020.15.036

近红外光谱法快速测定藜麦籽粒粗蛋白含量

基金项目: 

干热河谷特色生物资源开发四川省高校重点实验室项目(GR-2017-E-03、GR-2018-C-01)

2019年中央财政林业科技推广示范项目(2019-017)

攀枝花学院博士科研启动基金(bkqj2017012)

攀枝花市康养产业科研平台建设专项经费(2018CY-S-29)。

四川省科技厅应用基础研究项目(19YYJC1703)

详细信息
    作者简介:

    赵丽华(1985-),女,博士,讲师,研究方向:金沙江干热河谷生态修复、园艺植物栽培、园艺产品贮藏与加工,E-mail:pzhuzhaolihua@163.com。

    通讯作者:

    蒋云(1982-),男,博士研究生,副研究员,研究方向:作物遗传育种,E-mail:85197544@qq.com。

  • 中图分类号: TS213

Rapid Determination of Quinoa Seeds Crude Protein Content Using Near Infrared Spectroscopy

  • 摘要: 目的:为了满足高蛋白质藜麦的选育、栽培和农业实践所需,实现藜麦籽粒粗蛋白含量快速、无损检测。方法:本研究应用近红外光谱技术对藜麦籽粒粗蛋白含量的快速检测进行系统研究,选用具有代表性的122份藜麦品种为试材,以其中94份为建模集,28份为验证集,扫描得到藜麦建模集的近红外原始光谱,用Unscrambler 10.4软件进行光谱预处理并使用偏最小二乘法(PLS)建立藜麦籽粒粗蛋白含量的定量预测模型。结果:经滤波拟合法(Savitzky-Golay,SG)+标准正态变量(Standard Normal Variate,SNV)预处理建立的模型预测值决定系数(R2)为0.9380,被测组分浓度分析误差(RMSE)为0.4823,表现最佳。用此模型对验证集28份样品进行预测,相关分析表明,预测值与国标法实测值决定系数为0.9416;单因素方差分析表明,国标法实测值和模型预测值之间无显著差异(P>0.05),建立的模型具有很高的准确性,预测效果良好。结论:近红外光谱法作为一种简单快速无损的检测手段,能够用于藜麦籽粒粗蛋白含量的检测,可以为优质藜麦育种、栽培和农业实践提供技术支持。
    Abstract: Objective:In order to meet the requirements of breeding, cultivation and agricultural practice of high protein quinoa, and determine a quickly and nondestructive measurement of quinoa grain crude protein content method. Method:In this study, the rapid detection of the crude protein content in quinoa grains was systematically studied by using near-infrared spectroscopy. 122 representative quinoa varieties were selected as the test materials, among which 94 were used as the modeling set and 28 were used as the verification set. The Unscrambler 10.4 software was used to preprocess the original near-infrared spectra data after scanning, and established the quantitative prediction model of quinoa kernel crude protein content by partial least square method (PLS). Results:Combing the filter fitting method (savitzky-golay, SG) and Standard Normal Variate (SNV), obtained the best result, with the model predictive value determination coefficient (R2) of 0.9380, and the component concentration analysis error (RMSE) of 0.4823.The correlation analysis of the 28 samples in the verification set showed that the determination coefficient between the predicted value and the measured value of the national standard method was 0.9416. One-way anova showed that there was no significant difference between the measured value of GB method and the predicted value of the model (P>0.05), and indicating that the established model had high accuracy and good prediction effect. Conclusion:As a simple, this method can be used as a rapid and non-destructive method for the detection of crude protein content of the quinoa seeds, and can provide technical support for the breeding, cultivation and agricultural practice of high-quality quinoa.
  • 期刊类型引用(7)

    1. 李慧,顾洪涛,苏婷婷. 近红外光谱技术用于快速检测藜麦营养成分的研究进展. 农产品加工. 2024(01): 93-97+102 . 百度学术
    2. 孙岱,周玉侠,沈峰,孙茂,张娟. 基于便携式近红外光谱仪的测定新生儿足底血精氨酸实验研究. 中国优生与遗传杂志. 2024(08): 1697-1701 . 百度学术
    3. 丁海臻,刘纪伟,常乐,陶婷婷,刘长虎,蒋群辉,赵思琪,刘强,丁超. 基于FT-NIR光谱技术快速定量分析米糠中结合态与游离态酚类含量. 食品工业科技. 2023(08): 326-333 . 本站查看
    4. 孙岱,周玉侠,孙茂,牛婷婷,闫浩田,俞冬熠. 基于近红外光谱技术测定新生儿足底血苯丙氨酸含量的新方法. 华南国防医学杂志. 2022(05): 351-354 . 百度学术
    5. 朱均燕,黄嘉星. 计算机图像技术在烟草病害诊断中的应用研究进展. 武夷科学. 2022(02): 99-107 . 百度学术
    6. 田静,陈斌,陆道礼,盛龙禹,蔡贵民. 不同分光原理近红外光谱仪光谱标准化方法在小麦粉品质检测中的应用. 中国食品学报. 2022(10): 286-294 . 百度学术
    7. 赵钜阳,姚恒喆. 利用近红外光谱及电子鼻技术快速无损鉴别长期冻藏猪肉. 食品与生物技术学报. 2021(03): 89-96 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  291
  • HTML全文浏览量:  35
  • PDF下载量:  14
  • 被引次数: 10
出版历程
  • 收稿日期:  2019-09-29
  • 网络出版日期:  2020-11-12
  • 刊出日期:  2020-07-31

目录

    /

    返回文章
    返回
    x 关闭 永久关闭