• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
何鸿举, 蒋圣启, 马汉军, 王慧, 陈复生, 康壮丽, 潘润淑, 朱明明, 赵圣明, 王正荣. 基于NIR高光谱技术快速预测冷鲜鸡肉热杀索丝菌含量[J]. 食品工业科技, 2020, 41(13): 241-246,252. DOI: 10.13386/j.issn1002-0306.2020.13.038
引用本文: 何鸿举, 蒋圣启, 马汉军, 王慧, 陈复生, 康壮丽, 潘润淑, 朱明明, 赵圣明, 王正荣. 基于NIR高光谱技术快速预测冷鲜鸡肉热杀索丝菌含量[J]. 食品工业科技, 2020, 41(13): 241-246,252. DOI: 10.13386/j.issn1002-0306.2020.13.038
HE Hong-ju, JIANG Sheng-qi, MA Han-jun, WANG Hui, CHEN Fu-sheng, KANG Zhuang-li, PAN Run-shu, ZHU Ming-ming, ZHAO Sheng-ming, WANG Zheng-rong. NIR Hyperspectral Imaging Technology for Rapid Prediction of Brochothrix thermosphacta in Fresh Chilled Chicken[J]. Science and Technology of Food Industry, 2020, 41(13): 241-246,252. DOI: 10.13386/j.issn1002-0306.2020.13.038
Citation: HE Hong-ju, JIANG Sheng-qi, MA Han-jun, WANG Hui, CHEN Fu-sheng, KANG Zhuang-li, PAN Run-shu, ZHU Ming-ming, ZHAO Sheng-ming, WANG Zheng-rong. NIR Hyperspectral Imaging Technology for Rapid Prediction of Brochothrix thermosphacta in Fresh Chilled Chicken[J]. Science and Technology of Food Industry, 2020, 41(13): 241-246,252. DOI: 10.13386/j.issn1002-0306.2020.13.038

基于NIR高光谱技术快速预测冷鲜鸡肉热杀索丝菌含量

NIR Hyperspectral Imaging Technology for Rapid Prediction of Brochothrix thermosphacta in Fresh Chilled Chicken

  • 摘要: 基于NIR高光谱成像技术快速评估鸡肉热杀索丝菌含量。通过采集新鲜鸡肉高光谱图像并提取样本反射光谱信息(900~1699 nm),再采用多元散射校正(Multiplicative Scatter Correction,MSC)、基线校正(Baseline Correction,BC)和标准正态变量校正(Standard Normal Variable Correction,SNV)三种方法预处理原始光谱,分别利用偏最小二乘(Partial Least Squares,PLS)、多元线性回归(Multiple Linear Regression,MLR)挖掘光谱信息与鸡肉热杀索丝菌参考值之间的定量关系。同时采用PLS-β系数法、Stepwise算法和连续投影算法(Successive Projections Algorithm,SPA)筛选最优波长简化全波段模型(F-PLS)提高预测效率。结果显示,经BC预处理的全波段光谱(485个波长)构建的F-PLS模型预测热杀索丝菌效果较好,相关系数RP为0.973,误差RMSEP为0.295 lg CFU/g。基于PLS-β法从BC预处理光谱中筛选出25个最优波长构建的PLS-β-PLS(RP=0.931,RMSEP=0.434 lg CFU/g)模型预测较好。本试验表明,利用近红外高光谱成像技术可潜在实现鸡肉热杀索丝菌含量的快速评估。

     

    Abstract: NIR hyperspectral imaging technology was investigated to rapidly evaluate Brochothrix thermosphacta in chilled chicken. After collecting hyperspectral images of fresh chicken and extracting reflective spectral information in the range of 900~1699 nm, the original spectra were pretreated by three methods including multivariate scattering correction (MSC), baseline correction (BC) and standard normal variable (SNV) correction. The quantitative relationship between spectral information and the reference value of Brochothrix thermosphacta in chicken samples was established by partial least squares (PLS) and multivariate linear regression (MLR). The optimal wavelengths were selected by PLS-β method, stepwise method and successive projection algorithm (SPA), respectively. The results showed that the full-band PLS regression model (F-PLS) built with BC spectra (485 wavelengths) performed better in predicting Brochothrix thermosphacta with RP of 0.973 and RMSEP of 0.295 lg CFU/g.Twenty five optimal wavelengths were selected by PLS-β method to optimize the full wavelength PLS, resulting in the better performance with RP of 0.931 and RMSEP of 0.434 lg CFU/g. In conclusion, NIR hyperspectral imaging technology had a great potential and could be used for rapid evaluation of the content of Brochothrix thermosphacta in chicken.

     

/

返回文章
返回