Optimization of Chitinase Production by the Photobacterium sp.LG-1
-
摘要: 为提高海洋发光杆菌Photobacterium sp.LG-1产低温几丁质酶的酶活性,利用响应面法对其发酵产酶条件进行了优化。Plackett-Burman实验结果表明,影响菌株产酶的三个主要因素分别为发酵温度、发酵时间和酵母膏含量。菌株产酶的最适条件为:胶体几丁质浓度12.0 g/L、酵母膏浓度4.5 g/L、转速220 r/min、发酵温度20℃、装液量75 mL/250 mL、接种量1%、初始pH7.0、发酵时间120 h,几丁质酶的最大酶活为5.10 U/mL。实际平均酶活经验证与预测酶活相近,几丁质酶活比优化前提高了11.50%。为下一步低温几丁质酶的降解机制研究及在工业中的应用提供参考。Abstract: To increase chitinase activity,response surface methodology was used to optimize the fermentation conditions of cold-adapted chitinase by Photobacterium sp. LG-1. The result of Plackett-Burman showed that the important factors influencing chitinase production were fermentation temperature,fermentation time and yeast extract. The optimal fermentation conditions were determined as followed: colloidal chitin 12.0 g/L,yeast extract 4.5 g/L,shaking speed 220 r/min,fermentation temperature 20 ℃,liquid volume 75 mL/250 mL,inoculums dose 1%,pH7.0,and fermentation time 120 h,respectively. Under these conditions,the max enzyme activity of chitinase was 5.10 U/mL.The maximum theoretic value was consistent with mean value of verification test and the chitinase production was increased by 11.50% comparing to that before optimization.It provides a reference for the research on the degradation mechanism of low-temperature chitinase and its application in industry.
-
[1] Paszota P,Escalante-Perez M,Thomsen L R,et al. Secreted major Venus flytrap chitinase enables digestion of arthropod prey[J]. Biochim Biophys Acta,2014,1844:373-383.
[2] Adelina B Batista Jtao,Juliana M Gifoni,Mirella L Pereira,et al. New insights into the structure and mode of action of Mo-CBP3,an antifungal chitin-binding protein of Moringa oleifera seeds[J]. PloS One,2014,9:1-9.
[3] Gao L,Sun J,Secundo F,et al. Cloning,characterization and substrate degradation mode of a novel chitinase from Streptomyces albolongus ATCC 27414[J]. Food Chemistry,2018,261:329-336.
[4] Wang D,Li A,Han H,et al. A potent chitinase from,Bacillus subtilis,for the efficient bioconversion of chitin-containing wastes[J]. International Journal of Biological Macromolecules,2018:S0141813018310705.
[5] 顾张慧,刘姝,胡晟源,等. 一株产几丁质脱乙酰酶海洋细菌的筛选、鉴定及发酵优化[J]. 食品工业科技,2017(18):135-140. [6] Woltje M,Bobel M,Rheinnecker M,et al. Transgenic protein production in silkworm silk glands requires cathepsin and chitinase of Autographa californica multicapsid nucleopolyhedrovirus[J]. Appl Microbiol Biotechnol,2014,98:4571-4580.
[7] Shiladitya D S,Capes M D,Ram K,et al. Amino acid substitutions in cold-adapted proteins from Halorubrum lacusprofundi,an extremely halophilic microbe from Antarctica[J].PLoS ONE,2013,8(3):587-592.
[8] Gurav R,Tang J,Jadhav J. Novel chitinase producer,Bacillus pumilus, RST25 isolated from the shellfish processing industry revealed antifungal potential against phyto-pathogens[J]. International Biodeterioration & Biodegradation,2017,125:228-234.
[9] Frederiksen R. F,Paspaliari D. K,Larsen T,et al. Bacterial chitinases and chitin-binding proteins as virulence factors[J]. Microbiology,2013,159:833-847.
[10] Nagpure A,Choudhary B,Gupta R K. Chitinases:In agriculture and human healthcare[J]. Critical Reviews in Biotechnology,2014,34:215-232.
[11] Jankiewicz U,Brzezinska M S. Purification,characterization,and gene cloning of a chitinase from Stenotrophomonas maltophilia N4[J]. Journal of Basic Microbiology,2015,55(6):709-717.
[12] Li Z,Xia C,Wang Y,et al. Identification of an endo-chitinase from Corallococcus sp. EGB and evaluation of its antifungal properties[J]. International Journal of Biological Macromolecules,2019,132:1235-1243.
[13] Wang X,Chi N,Bai F,et al. Characterization of a cold-adapted and salt-tolerant exo-chitinase(ChiC)from Pseudoalteromonas sp DL-6[J]. Extremophiles Life Under Extreme Conditions,2016,20(2):167-176.
[14] Wang X,Zhao Y,Tan H,et al. Characterisation of a chitinase from Pseudoalteromonas sp. DL-6,a marine psychrophilic bacterium[J]. International Journal of Biological Macromolecules,2014,70:455-462.
[15] Chavan S B,Deshpande M V. Chitinolytic enzymes:An appraisal as a product of commercial potential[J]. Biotechnology Progress,2013,29:833-846.
[16] 王晓辉,赵勇,赵小明,等.海洋低温几丁质酶菌株筛选、鉴定及酶谱分析[J]. 西北农业学报,2014,23(9):92-97. [17] Das S,Roy D,Sen R. Utilization of chitinaceous wastes for the production of chitinase[J]. Advances in Food & Nutrition research,2016,78(3):27-36.
[18] Arimori T,Kawamoto N,Shinya S,et al. Crystal structures of the catalytic domain of a novel glycohydrolase family 23 chitinase from Ralstonia sp. A-471 reveals a unique arrangement of the catalytic residues for inverting chitin hydrolysis[J]. Journal of Biological Chemistry,2013,288:18696-18706.
[19] Sun Q,Wu D,Zhang Z,et al. Effect of cold-adapted microbial agent inoculation on enzyme activities during composting start-up at low temperature[J]. Bioresource Technology,2017,244(Pt 1):635-640.
[20] Liu Q,Ren P,Liu Y,et al. Exploration of the glycosyltransferase BmmGT1 from a marine-derived Bacillus strain as a potential enzyme tool for compound glycol-diversification[J]. Microbiol Biotechnol,2018. 28(6):931-937.
[21] Jang M S,Lee Y M,Cho Y S,et al. Overexpression and characterization of a novel chitinase gene from a marine bacterium Pseudomonas sp. BK1[J]. Indian Journal of Biochemistry Biophysics,2005,42(6):339-344.
[22] Lonhienne T,Mavromatis K,Vorgias C E,et al. Cloning,sequences,and characterization of two chitinase genes from the Antarctic Arthrobacter sp. strain TAD20:isolation and partial characterization of the enzymes[J]. Journal of Bacteriology,2001,183:1773-1779.
[23] Suresh,P. V. Biodegradation of shrimp processing bio-waste and concomitant production of chitinase enzyme and N-acetyl-D-glucosamine by marine bacteria:Production and process optimization[J]. World J Microbiol Biotechnol,2012,28(10):2945-2962.
[24] Struvay C.,Feller G. Optimization to low temperature activity in psychrophilic enzymes[J]. International Journal Molecular Sciences,2012,13(9):11643-11665.
[25] Suganthi M,Senthilkumar P,Arvinth S,et al. Chitinase from Pseudomonas fluorescens and its insecticidal activity against Helopeltis theivora[J]. The Journal of General and Applied Microbiology,2017,63(4):222-227.
[26] Ziatabar S,Zepf J,Rich S,et al. Chitin,chitinases,and chitin lectins:Emerging roles in human pathophysiology[J]. Pathophysiology the Official Journal of the International Society for Pathophysiology,2018,25(4):253-259.
[27] Frederiksen R F,Yoshimura Y,Storgaard B G,et al. A diverse range of bacterial and eukaryotic chitinases hydrolyzes the LacNAc(Galβ1-4GlcNAc)and LacdiNAc(GalNAcβ1-4GlcNAc)motifs found on vertebrate and insect cells[J]. Journal of Biological Chemistry,2015,290:5354-5366.
[28] Langner T G,Hre V. Fungal chitinases:function,regulation,and potential roles in plant/pathogen interactions[J]. Current Genetics,2016,62(2):243-254.
[29] Kumar M,Brar A,Yadav M,et al. Chitinases-potential candidates for enhanced plant resistance towards fungal pathogens[J]. Agriculture,2018,8(2):29-39.
[30] Pan M,Li J,Lv X,et al. Molecular engineering of chitinase from Bacillus sp. DAU101 for enzymatic production of chitooligosaccharides[J]. Enzyme & Microbial Technology,2019,124:54-62.
[31] 陈立功,吴家葳,张庆芳,等. 产低温几丁质酶菌株的筛选、鉴定与产酶条件优化[J/OL]. 食品工业科技:1-14[2020-12-04 ]. http://kns.cnki.net/kcms/detail/11.1759.TS.20200612.1014.002.html.
-
期刊类型引用(7)
1. 杨晓钰,李传博,刘春莹,孙付保,窦少华. 带电短肽T_7~+、T_6~-对α-淀粉酶活性和构象的影响. 中国食品学报. 2024(07): 14-23 . 百度学术
2. 马明昊,孙全敏,周姝静,迟乃玉,张庆芳. 基于高通量测序方法的白菜内生细菌多样性分析. 中国食品添加剂. 2023(03): 89-98 . 百度学术
3. 韩鹏飞,朱璇,杨敏,黄贵强. 戴氏虫草产多糖的固体发酵工艺优化. 食品工业科技. 2023(14): 130-136 . 本站查看
4. 袁源,宿玲恰,张康,朱昫飏,夏伟,吴敬. 地衣芽孢杆菌几丁质酶在枯草芽孢杆菌中的重组表达及其制备氨基寡糖的研究. 南方水产科学. 2022(02): 39-47 . 百度学术
5. 徐勤茜,朱国威,赵梓伶,陶雪婷,李子院,郝再彬,李海云. 酸橙内生菌Bacillus thuringiensis Bt028几丁质酶的分离纯化及其酶学性质. 食品工业科技. 2022(11): 159-166 . 本站查看
6. 宋阳,陈梦,吴新财,丁志雯,李甜,刘耀东,房耀维,刘姝. 产几丁质酶菌株Acinetobacter sp. CZW011的筛选鉴定与酶学性质研究. 中国食品添加剂. 2022(11): 1-8 . 百度学术
7. 鲁明杰,李传博,谢丹丹,迟乃玉,岳松年,窦少华. 人工设计短肽对α-淀粉酶催化作用的影响. 中国酿造. 2021(11): 198-202 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 310
- HTML全文浏览量: 40
- PDF下载量: 23
- 被引次数: 7