Research Progress of Milk Protein Desensitization Based on Biological Enzymatic Method
-
摘要: 牛乳是婴幼儿主要食物蛋白来源,但也是引起食物过敏的八大类食物之一,研究生产低致敏乳制品对牛乳过敏者具有重要意义。目前,生物酶法是研发低致敏乳制品的主要技术途径。本文详细列举了牛乳过敏蛋白及其能够被识别的致敏表位,介绍了应用生物酶法处理得到低抗原性牛乳蛋白水解产物的技术及其作用效果,并提出了一些对后续研究的思考,为低致敏乳制品研究和未来实现定向水解提供理论依据。Abstract: Milk is the main food protein source for infants and young children,but it is also one of the eight major foods that cause food allergies. The research and production of hypoallergenic dairy products is of great significance to people with milk allergies. At present,biological enzymatic method is the main technical way to develop hypoallergenic dairy products. This article lists the cow milk allergic protein and its sensitizing epitopes which can be recognized,introduces the technology and effect of the application of biological enzymatic treatment to obtain low antigenic cow milk protein hydrolysate,and puts forward some thoughts on subsequent research. This paper provides a theoretical basis for the research of hypoallergenic dairy products and the realization of directed hydrolysis in the future.
-
Keywords:
- milk /
- sensitized epitope /
- hydrolysis technology /
- hydrolysate /
- antigenicity
-
[1] Wal J M. Structure and function of milk allergens[J]. Allergy,2010,56(s67):35-38.
[2] Pecora V,Mennini M,Calandrelli V,et al. How to actively treat food allergy[J]. Curr Opin Allergy Cl,2018,18(3):248-257.
[3] Fiocchi A,Brozek J,Schunemann H,et al. World Allergy Organization(WAO)diagnosis and rationale for action against cow's milk allergy(DRACMA)guidelines[J]. Pediat Allerg Imm-Uk,2010,21(4):125.
[4] Raikos V. Effect of heat treatment on milk protein functionality at emulsion interfaces. A review[J]. Food Hydrocolloid,2010,24(4):259-265.
[5] Costa J,Fernandes T J R,Villa C,et al. Advances in food allergen analysis[M]. Food safety:Innovative Analytical Tools for Safety Assessment,2017.
[6] Martorell-Aragones A,Echeverria-Zudaire L,Alonso-Lebrero E,et al. Position document:IgE-mediated cow's milk allergy[J]. Allergol Immunopathol(Madr),2015,43(5):507-526.
[7] 徐正国,温晓红. 婴幼儿牛奶蛋白过敏诊治进展[J]. 安徽医药,2019,23(3):608-610. [8] Do A B,Williams K,Toomer O T. In vitro digestibility and immunoreactivity of bovine milk proteins[J]. Food Chemistry,2016,190:581-587.
[9] Matsuo H,Yokooji T,Taogoshi T. Common food allergens and their IgE-binding epitopes[J]. Allergol Int,2015,64(4):332-343.
[10] Ruiter B,Trégoat V,M'rabet L,et al. Characterization of T cell epitopes in alphas1-casein in cow's milk allergic,atopic and non-atopic children[J]. Clinical & Experimental Allergy,2010,36(3):303-310.
[11] Cong Y J,Li L F. Identification of the critical amino acid residues of immunoglobulin E and immunoglobulin G epitopes in β-lactoglobulin by alanine scanning analysis[J]. Journal of Dairy ence,2012,95(11):6307-6312.
[12] 范安妮,佘之蕴,梁宇斌,等. 牛奶中主要过敏原αs1-酪蛋白的生物信息学分析[J]. 食品安全质量检测学报,2016,7(12):4740-4744. [13] Villa C,Costa J,Oliveira M B P P,et al. Bovine milk allergens:A comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety,2018,17(1):137-164.
[14] Chatchatee P,Järvinen K M,Bardina L,et al. Identification of IgE and IgG binding epitopes on beta-and kappa-casein in cow's milk allergic patients[J]. Clinical & Experimental Allergy,2010,31(8):1256-1262.
[15] 刘法辉. 牛乳中β-酪蛋白构象性表位定位研究[D].南昌:南昌大学,2011. [16] El Mecherfi K E,Curet S,Lupi R,et al. Combined microwave processing and enzymatic proteolysis of bovine whey proteins:The impact on bovine beta-lactoglobulin allergenicity[J]. Journal of Food Science & Technology,2019,56(1):177-186.
[17] 兰欣怡,王加启,卜登攀,等. 牛奶β-乳球蛋白研究进展[J]. 中国畜牧兽医,2009,36(6):109-11. [18] Tsuji N M,Kurisaki J I,Mizumachi K,et al. Localization of T-cell determinants on bovine β-lactoglobulin[J]. Immunology Letters,1993,37(2-3):215-221.
[19] Miller K,Meredith C,Selo I,et al. Allergy to bovine beta-lactoglobulin:Specificity of immunoglobulin E generated in the Brown Norway rat to tryptic and synthetic peptides[J]. Clinical & Experimental Allergy,2010,29(12):1696-1704.
[20] Yanjun C,Hong Y,Yuting Q,et al. Identification of the critical amino acid residues of immunoglobulin E and immunoglobulin G epitopes on αs1-casein by alanine scanning analysis[J]. Journal of Dairy Science,2012,95(11):6307-6312.
[21] Jarvinen K M,Chatchatee P,Bardina L,et al. IgE and IgG binding epitopes on alpha-lactalbumin and beta-lactoglobulin in cow's milk allergy[J]. Int Arch Allergy Imm,2001,126(2):111-118.
[22] Xin L I,Chen H,Ping T,et al. Epitope mapping of buffalo beta-lactoglobulin against rabbit polyclonal antibody following phage display technique[J]. Journal of Food Biochemistry,2012,36(1):56-65.
[23] 武涌. 牛乳β-乳球蛋白构象性表位定位及结构特征研究[D]. 南昌:南昌大学,2012. [24] Chen F M,Lee J H,Yang Y H,et al. Analysis of α-lactalbumin-,β-lactoglobulin-,and casein-specific IgE among children with atopic diseases in a tertiary medical center in northern Taiwan[J]. Journal of Microbiology,Immunology and Infection,2014,47(2):130-136.
[25] Meulenbroek L A P M,Jager C F,Den Hartog,et al. Characterization of T cell epitopes in bovine α-lactalbumin[J]. Int Arch Allergy Imm,2014,163(4):292-296.
[26] Adams S L,Barnett D,Walsh B J,et al. Human IgE-binding synthetic peptides of bovine beta-lactoglobulin and alpha-lactalbumin. In vitro cross-reactivity of the allergens[J]. Immunol Cell Biol,1991,69(3):191-197.
[27] 丛艳君,陈澍,李晔,等. 牛乳α-乳白蛋白IgE线性表位的关键氨基酸识别[J]. 食品科学,2017,38(11):1-5. [28] Golkar A,Milani J M,Vasiljevic T. Altering allergenicity of cow's milk by food processing for applications in infant formula[J]. Critical Reviews in Food Science & Nutrition,2019,59(1):159-172.
[29] Venter C,Brown T,Meyer R,et al. Better recognition,diagnosis and management of non-IgE-mediated cow's milk allergy in infancy:iMAP-an international interpretation of the MAP(Milk Allergy in Primary Care)guideline[J]. Clinical and Translational Allergy,2017,7(1):26-34.
[30] Ahmad N,Imran M,Khan M K,et al. Degree of hydrolysis and antigenicity of buffalo alpha S1 casein and its hydrolysates in children with cow milk allergy[J]. Food Agr Immunol,2016,27(1):87-98.
[31] 林单,林峰,陆路,等. 水解牛乳酪蛋白的抗原性研究[J].食品与发酵工业,2013,39(11):1-5. [32] 刘晓宇,李铮,张颖,等. 酶解对牛乳酪蛋白抗原性的影响[J]. 中国乳品工业,2011,39(2):27-30. [33] 汝成业,张娟,堵国成,等. 包埋固定化酶降解牛奶αs1-酪蛋白过敏性研究[J]. 食品与生物技术学报,2016,35(4):387-392. [34] Kim S B,Ki K S,Khan M A,et al. Peptic and tryptic hydrolysis of native and heated whey protein to reduce its antigenicity[J]. J Dairy Sci,2007,90(9):4043-4050.
[35] 沈小琴,郑海,罗永康,等. 酶解对乳清蛋白抗原性影响的研究[J]. 中国乳品工业,2006,34(6):12-15. [36] Karen K,Esch B C A M,Van,Dijk I V,et al. Enzymatic treatment of whey proteins in cow's milk results in differential inhibition of IgE-mediated mast cell activation compared to T-cell activation[J]. Int Arch Allergy Imm,2012,159(3):263-270.
[37] Wroblewska B,Karamac M,Amarowicz R,et al. Immunoreactive properties of peptide fractions of cow whey milk proteins after enzymatic hydrolysis[J]. International Journal of Food Science & Technology,2010,39(8):839-850.
[38] 付莉,岳喜庆,宋建新,等. 复合酶降低牛乳蛋白致敏性的研究[J]. 中国乳品工业,2013,41(5):22-25. [39] 王麟艳. 牛乳β-酪蛋白消化产物的制备及其功能性评价[D]. 哈尔滨:东北农业大学,2018. [40] 郑俊彦,张昊,郭慧媛,等. 利用蛋白质改性技术降低牛乳致敏性的研究进展[J]. 中国乳业,2011(12):46-49. [41] 巫圆圆,李欣,陈红兵. 酶法降低牛乳蛋白致敏性的研究进展[J]. 食品科学,2012,33(23):340-345. [42] Ambrosi V,Polenta G,Gonzalez C,et al. High hydrostatic pressure assisted enzymatic hydrolysis of whey proteins[J]. Innovative Food Science Emerging Technologies,2016,38(PartB):294-301.
[43] Chicón R,López-Expósito I,Belloque J,et al. Hydrolysis under high hydrostatic pressure as a means to reduce the potencial allergenicity of β-lactoglobulin[J]. Journal of Allergy and Clinical Immunology,2008,121(2):S249.
[44] Lozano-Ojalvo D,Perez-Rodriguez L,Pablos-Tanarro A,et al. Pepsin treatment of whey proteins under high pressure produces hypoallergenic hydrolysates[J]. Innov Food Sci Emerg,2017,43:154-162.
[45] Zeece M,Huppertz T,Kelly A J I F S,et al. Effect of high-pressure treatment on in-vitro digestibility of β-lactoglobulin[J].Innovative Food Science and Emerging Technologies,2008,9(1):62-69.
[46] Blayo C,Vidcoq O,Lazennec F,et al. Effects of high pressure processing(hydrostatic high pressure and ultra-high pressure homogenisation)on whey protein native state and susceptibility to tryptic hydrolysis at atmospheric pressure[J]. Food Res Int,2016,79:40-53.
[47] Mecherfi K E E,Saidi D,Kheroua O,et al. Combined microwave and enzymatic treatments for β-lactoglobulin and bovine whey proteins and their effect on the IgE immunoreactivity[J]. European Food Research and Technology,2011,233(5):859-867.
[48] Abadia-Garcia L,Castano-Tostado E,Ozimek L,et al. Impact of ultrasound pretreatment on whey protein hydrolysis by vegetable proteases[J]. Innov Food Sci Emerg,2016,37:84-90.
[49] Madadlou A,Sheehan D,Emam-Djomeh Z,et al. Ultrasound-assisted generation of ACE-inhibitory peptides from casein hydrolyzed with nanoencapsulated protease[J]. J Sci Food Agric,2011,91(11):2112-2116.
[50] Sabadin I S,Villas-Boas M B,Zollner R D L,et al. Effect of combined treatment of hydrolysis and polymerization with transglutaminase on β-lactoglobulin antigenicity[J]. European Food Research & Technology,2012,235(5):801-809.
[51] 李欣,陈红兵. 过敏原在食品加工中的变化[J]. 食品工业,2005(1):50-52. [52] 樊增禄,戴瑾瑾,朱泉. 蛋白酶对羊毛的作用机理研究[J]. 纺织学报,2002,23(1):19-21. [53] Babij K,Bajzert J,Dąbrowska A,et al. Hydrolysis with Cucurbita ficifolia serine protease reduces antigenic response to bovine whey protein concentrate and αs-casein[J]. Amino Acids,2015,47(11):2335-2343.
[54] 胡长利,陈历俊,宋小红,等. 乳源过敏及低致敏乳制品的研究[J]. 中国乳品工业,2011,39(3):42-45. -
期刊类型引用(25)
1. 牛晓雨,邢媛媛,李大彪. 植物活性成分对动物肠道屏障功能的调控作用及其机制. 畜牧兽医学报. 2024(04): 1467-1477 . 百度学术
2. 魏炳琦,高小雨,刘延鑫,王义翠. 红枣多糖的结构、生物学活性及产品开发进展. 食品工业科技. 2024(12): 1-9 . 本站查看
3. 陈浩,尹君叶,郝建雄,赵丹丹. 红枣多糖的生物活性及作用机制研究进展. 食品工业科技. 2024(13): 342-351 . 本站查看
4. 李彬,赵彩云,吴斌,郑力,傅樱花. 红枣多糖的提取工艺优化研究. 保鲜与加工. 2024(06): 48-54 . 百度学术
5. 张晓新,范春娟,王君巧,聂少平. 吴茱萸多糖的提取纯化与结构解析. 南昌大学学报(理科版). 2024(03): 261-270 . 百度学术
6. 李安诺,朱禹,岳仁宋. 大枣对2型糖尿病大鼠摄食及肠道炎症损伤的影响及机制研究. 食品工业科技. 2024(19): 307-315 . 本站查看
7. 吴俊燕,马超,赵平. 黑地黄丸对慢性肾功能衰竭的作用机制研究进展. 疑难病杂志. 2024(10): 1260-1263 . 百度学术
8. 吴喆,朱佳敏,刘军,符小玉,娄磊,涂亦娴,秦新政,艾合买提江·艾海提. 红枣主要活性成分及其功能活性研究进展. 现代食品科技. 2024(09): 359-369 . 百度学术
9. 吕英楠,田颖颖,刘闯,赵新月,李依林,左泽平,曹欣垚,杨硕,王婷婷,杨海润,王志斌. 人参归脾丸防治环磷酰胺化疗胃肠道反应的实验研究. 中南药学. 2024(11): 2846-2850 . 百度学术
10. 张帅,高媛,杨杨,马春敏,许馨予,边鑫,张娜. 多糖的生物活性及其对胃肠道功能的影响. 中国食品学报. 2024(10): 438-448 . 百度学术
11. 徐倩倩,杨万群,王玉波,吴菲,代娟娟,秦蜜蜜,庄金秋,王艳,沈志强,李继昌. 熟地黄多糖对环磷酰胺诱导的免疫抑制小鼠的免疫调节作用研究. 中国畜牧兽医. 2023(02): 693-703 . 百度学术
12. 闫金玲,王明亚,范京惠,张秀江,李树静,肖阳,李秋凤,曹玉凤. 枣粉饲料的营养价值及其在动物生产中的应用. 饲料研究. 2023(10): 139-143 . 百度学术
13. 代琪,白苑丁,叶俏波,杨小艳,赵小勤,王欣. 不同产地大枣化学成分及其药理作用研究进展. 中国药物评价. 2023(06): 506-511 . 百度学术
14. 毛欣雨,梁慧,王行,董娜. 植物多糖对动物肠道的保护作用及其分子机制. 中国畜牧兽医. 2022(01): 150-160 . 百度学术
15. 张喆萍,李瑞银,李树静,李建国,沈宜钊,高艳霞,李妍,范京惠,谢鹏,李秋凤,曹玉凤. 饲粮添加发酵枣粉对高温季节荷斯坦公牛生长性能、免疫性能和抗氧化性能的影响. 动物营养学报. 2022(02): 1027-1039 . 百度学术
16. 陈晓兰,宣嘉颖,王婧,冒玉娟,徐向萍,杨海峰. 桑叶多糖对免疫抑制小鼠肠道损伤和微生物多样性的调节作用. 动物营养学报. 2022(03): 1996-2008 . 百度学术
17. 沈柯辰,吴现华,刘静,张仁堂. 枣渣中功效成分提取及综合利用研究进展. 保鲜与加工. 2022(05): 96-100 . 百度学术
18. 白冰瑶,付超,黄茂汐,吴格格,张春兰. 红枣多糖的抗氧化活性及体外模拟消化和酵解研究. 塔里木大学学报. 2022(02): 24-34 . 百度学术
19. 张阳,梅翠,李会,熊静,王士源,程鹏,喻祥,何玉张,吴俊伟,陈红伟. 硒化修饰对白术多糖抗氧化和免疫调节作用的影响. 中国兽医学报. 2022(06): 1249-1255 . 百度学术
20. 段睿洁,张航瑜,武玲,杨卫星,徐昆龙. 蚯蚓蛋白提取物对免疫抑制小鼠肠黏膜免疫功能的调节作用. 云南农业大学学报(自然科学). 2022(04): 597-603 . 百度学术
21. 王明珠,丰源,李涛,赵卫国,侯启瑞,吴萍,沈曼曼. 桑叶多糖的提取纯化及在动物养殖生产中的应用研究进展. 饲料研究. 2022(17): 134-137 . 百度学术
22. 徐光沛,蒋平,何燕飞,孙桃桃,陈存武,佘德勇,王敬利,左瑞华. 构树叶粗多糖对环磷酰胺诱导免疫抑制小鼠免疫功能的影响. 西北农业学报. 2022(07): 815-822 . 百度学术
23. 马帅帅,黄璐琦,颜冬梅,简晖,王飞. 食药两用物质防治肠道疾病研究进展. 中医临床研究. 2022(35): 77-81 . 百度学术
24. 陈一淑,苏小华. 植物多糖对肠道健康保护作用的研究进展. 广东饲料. 2021(05): 29-30 . 百度学术
25. 林丽丽,冯璐,黄克,孙燕波,安黎,戴启刚,单进军,汪受传. 儿童病毒性肺炎分期防治的中医药研究进展及策略探析. 南京中医药大学学报. 2021(06): 949-957 . 百度学术
其他类型引用(15)
计量
- 文章访问数: 308
- HTML全文浏览量: 26
- PDF下载量: 31
- 被引次数: 40