Study on Preparation of Activated Carbon from Soybean Straw and Its Adsorption Performance on Cu2+
-
摘要: 以大豆秸秆为原料,采用ZnCl2活化法制备大豆秸秆活性炭(soybean straw activated carbon,记作SSAC),通过扫描电子显微镜(SEM)、傅立叶变换红外光谱(FT-IR)对样品进行形貌表征,研究了炭化温度、炭化时间等条件对SSAC亚甲基蓝吸附值的影响,通过静态实验研究了SSAC对水溶液中Cu2+的吸附特性,并考察了溶液pH、温度和时间对SSAC吸附Cu2+的影响。结果表明,制备SSAC的优化工艺条件是:ZnCl2活化浓度3 mol/L,炭化温度700℃,炭化时间40 min,该条件下SSAC的亚甲基蓝吸附值为1.84 mL/0.1 g。当Cu2+溶液初始浓度为10 mg/L,SSAC投加量为0.2 g,在pH5.0、温度50℃、时间50 min时,SSAC对于Cu2+离子的吸附效果最好,最大吸附量4.589 mg/g,脱除率为91.77%。SEM和FT-IR观察发现,大豆秸秆活性炭具有丰富发达的基于多层石墨状的裂隙结构,表面含有丰富的C=O、O-H、C=C和C-O含氧官能团。大豆秸秆活性炭对于Cu2+离子吸附性能较好,适用于含Cu2+废水处理及金属离子吸附。Abstract: The activated carbon was prepared from soybean straw by using ZnCl2 as the activation agent and analysis methods such as SEM and FT-IR were used to characterize the SSAC. The influence of activation time and activation temperature on methylene blue adsorption value for soybean straw activated carbon were studied,and the adsorption characteristics of Cu2+ using the SSAC in water solution were studied through static experiments,the influence of solution pH value,temperature and time were investigated. The results showed that the optimum preparation conditions were determined as follows: The activation concentration of ZnCl2was 3 mol/L,carbonization temperature was 700 ℃,carbonization time was 40 min. Under this condition,the methylene blue adsorption value for SSAC was 1.84 mL/0.1 g. When the initial concentration of Cu2+ was 10 mg/L,the dosage of SSAC was 0.2 g,SSAC had the best adsorption effect when pH was 5.0,temperature was 50 ℃ and time was 50 min. The maximum adsorption capacity of SSAC was 4.589 mg/g,the removal rate was 91.77%. The morphology and structure of active carbon were observed by SEM and FT-IR,the activated carbon had rich and developed fracture structure based on multi-layer graphite,which was rich in oxygen-containing functional groups such as hydroxyl carboxyl ketonic carbonyl aliphatic ether and ester group on the surface. Therefore,this activated carbon has a good adsorption performance for Cu2+ ions,it is suitable for treating wastewater containing Cu2+ and metal ion adsorption.
-
Keywords:
- activated carbon /
- soybean straw /
- layered fracture /
- Cu2+ /
- adsorption performance
-
[1] 邱阳.含铜废水处理法的研究进展[J].污染防治技术,2015,28(3):22-24. [2] Murray A,Örmeci B.Use of polymeric sub-micron ion-exchange resins for removal of lead,copper,zinc,and nickel from natural waters[J].Journal of Environmental Sciences,2019,75:247-254.
[3] Ye L J,Chai L Y,Li Q Z,et al. Chemical precipitation granular sludge(CPGS)formation for copper removal from wastewater[J].RSC Advances,2016,6(115):114405-114411.
[4] Swain B,Mishra C,Hong H S,et al. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process:Understanding their chemistry and comparisons of sustainable valorization processes[J].Environmental Research,2016,147:249-258.
[5] Zhang X B,Dong W Y,Sun F Y,et al. Degradation efficiency and mechanism of azo dye RR2 by a novel ozone aerated internal micro-electrolysis filter[J].Journal of Hazardous Materials,2014,276:77-87.
[6] Hunsom M,Pruksathorn K,Damronglerd S,et al. Electrochemical treatment of heavy metals(Cu2+,Cr6+,Ni2+)from industrial effluent and modeling of copper reduction[J]. Water Research,2005,39(4):610-616.
[7] Conceição F T,Pichinelli B C,Silva M S G,et al. Cu(Ⅱ)adsorption from aqueous solution using red mud activated by chemical and thermal treatment[J].Environmental Earth Sciences,2016,75(5):1-7.
[8] 李想,吴雅琴,张高旗,等.含铜废水治理及资源化利用技术新进展[J].环境科学与技术,2018,41(8):34-40 ,86.
[9] Yuen F K,Hameed B H.Recent developments in the preparation and regeneration of activated carbons by microwaves[J].Advances in Colloid and Interface Science,2009,149(1/2):19-27.
[10] 郑秋生,李龙,胡雪玉.农作物秸秆用于制备活性炭的研究进展[J].纤维素科学与技术,2010,18(3):68-76. [11] 崔纪成,杨瑛.棉秆基活性炭的表征及其Cu2+吸附特性[J].江苏农业科学,2017,45(9):245-248. [12] 张悦悦.南疆棉秆分段制备活性炭工艺及对Cu2+吸附性研究[D]. 阿拉尔:塔里木大学,2018. [13] 向松明,杨海涛,姚兰.大豆秸秆成分与结构分析[J].湖北造纸,2012(4):35-37. [14] 纪楠.大豆秸秆木质素和纤维素含量与近红外光谱相关性模型研究[D].哈尔滨:东北农业大学,2016. [15] 田龙.高中孔率木质素基活性炭的制备及表征[J].太阳能学报,2019,40(3):877-883. [16] 何佳闻,何春霞,郭航言,等.5种秸秆生物炭吸附亚甲基蓝及其性能对比研究[J].南京农业大学学报,2019,42(2):382-388. [17] 田叶顺.基于微波热解活化的生物质活性炭制备及其脱硫性能研究[D].济南:山东大学,2019. [18] 朱波.用于重金属离子吸附的生物吸附剂的初步研究[D].上海:上海交通大学,2008. [19] 高银东,王淑花,于晓颖,等.氯化锌活化棉纤维制备成型活性炭工艺研究[J].应用化工,2019,48(4):853-856 ,859.
[20] 李慧琴.汉麻杆基活性炭的制备及表征[D].北京:北京化工大学,2007. [21] 颜涛.稻草秸秆活性炭的制备及性能研究[D].武汉:武汉工业学院,2009. [22] 张会平,叶李艺,杨立春.氯化锌活化法制备木质活性炭研究[J].材料科学与工艺,2006,14(1):42-45. [23] 毛宇,马承愚,范艺苑,等.废弃辣椒秸秆高比表面积活性炭的制备及表征[J].应用化工,2012,41(5):766-770. [24] 张传涛,邢宝林,黄光许,等.水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J].材料导报,2018,32(4):1088-1093. [25] 颜婷婷,吴东辉,严雪峰,等. 黄麻和红麻纤维磨木木质素的红外光谱特征[J].中国麻业科学,2008,30(6):316-320. [26] 刘羽,邵国强,许炯.竹纤维与其它天然纤维素纤维的红外光谱分析与比较[J].竹子研究汇刊,2010,29(3):42-46. [27] 夏雯.生物炭的制备及对土壤重金属吸附特性研究[D]. 南京:南京师范大学,2016. [28] 刘忠晓. 浒苔活性炭对重金属离子Cu2+的吸附性能研究[J].绿色科技,2018(16):84-85,87. [29] 李本盛,吴彩斌,倪帅男,等.柚皮残渣制备活性炭对Cu2+吸附性能[J].有色金属科学与工程,2018,9(6):38-44. [30] 吴昱,张骥,张立波,等.废弃纤维板制备的活性炭对含铜离子废水的吸附[J].东北林业大学学报,2012,40(10):120-123. [31] Villaescusa I,Fiol N,Martínez M,et al. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes[J].Water Research,2004,38(4):992-1002.
[32] Li Y H,Ding J,Luan Z K,et al. Competitive adsorption of Pb2+,Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes[J].Carbon,2003,41(14):2787-2792.
[33] 李瑛,李洪军,张桂银,等.几种电解质对土壤吸附Cu2+的影响[J].生态环境,2003,12(1):8-11. [34] 陈丽萍,司秀荣,李凌云.磷酸活化活性炭对Cu2+的吸附特征研究[J].生态环境学报,2011,20(2):353-358. [35] 刘晓东,李沅,熊杰,等.改性玉米秸秆对铜离子的吸附性能[J].大连工业大学学报,2018,37(2):100-104. [36] 李慧卿,孙泽臣,常丹,等.毛建对重金属Ni2+和Cu2+吸附的研究[J].食品研究与开发,2016,37(10):42-45 ,46.
-
期刊类型引用(5)
1. 王共明,黄会,丁玉竹,薛敬林,舒志强,井月欣,矫春娜,张健. 海参粉超临界CO_2萃取脱脂工艺优化及对挥发性风味物质的影响. 食品工业科技. 2025(03): 241-248 . 本站查看
2. 李正阳,刘畅,费靖淳,周浩,韩万鑫,潘一萍,祁艳霞,赵前程. 刺参自溶肽美拉德反应产物表征及抗氧化活性研究. 食品安全质量检测学报. 2025(04): 224-233 . 百度学术
3. 赵影,田柬昕,钟碧銮,李萌,苏可珍. 海参深加工脱腥技术研究进展. 食品工业. 2024(03): 229-235 . 百度学术
4. 王志龙,王禹,段静瑶,苏岩峰,喻佩. 海参制品腥味化合物形成与脱腥技术研究进展. 中国调味品. 2024(06): 206-212 . 百度学术
5. 马慧,顾雪敏,李芳,梅洁,王梓棚,孔令明. 菌酶协同处理在食品加工中的研究进展及应用. 中国调味品. 2024(07): 208-213 . 百度学术
其他类型引用(1)
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量:
- 被引次数: 6