• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
高锦红, 马咏梅, 胡明. 基于电导率变化的食用油掺假识别研究[J]. 食品工业科技, 2019, 40(19): 226-229. DOI: 10.13386/j.issn1002-0306.2019.19.038
引用本文: 高锦红, 马咏梅, 胡明. 基于电导率变化的食用油掺假识别研究[J]. 食品工业科技, 2019, 40(19): 226-229. DOI: 10.13386/j.issn1002-0306.2019.19.038
GAO Jin-hong, MA Yong-mei, HU Ming. Identification of Adulteration in Edible Oil Based on Conductivity Change[J]. Science and Technology of Food Industry, 2019, 40(19): 226-229. DOI: 10.13386/j.issn1002-0306.2019.19.038
Citation: GAO Jin-hong, MA Yong-mei, HU Ming. Identification of Adulteration in Edible Oil Based on Conductivity Change[J]. Science and Technology of Food Industry, 2019, 40(19): 226-229. DOI: 10.13386/j.issn1002-0306.2019.19.038

基于电导率变化的食用油掺假识别研究

Identification of Adulteration in Edible Oil Based on Conductivity Change

  • 摘要: 采用电导率法测定了菜籽油、玉米油和花生油的萃取水相电导率,并进行了花生油掺假模拟实验,同时将电导率值作为信息数据进行了食用花生油的模式识别研究。研究结果表明花生油水相电导率为(15.41±0.17)μS/cm,菜籽油水相电导率为(18.93±0.13)μS/cm,玉米油水相电导率为(9.45±0.09)μS/cm;在花生油中掺入不同比例菜籽油和大豆油后其电导率发生变化,其中的花生油含量与其电导率之间具有良好的拟合关系,所建食用油不同比例互掺模型在一定程度上能实现食用油的定量分析,将电导率值作为特征信息数据用于食用油掺假模式识别研究具有较好的预测识别能力。

     

    Abstract: The water phase conductivity of rapeseed oil,corn oil and peanut oil was measured by conductivity method. The simulation experiment of peanut oil adulteration was carried out,and the pattern recognition of peanut oil was studied by using conductivity value as information data. The results showed that the conductivities of peanut oil,rapeseed oil and corn oil in water phase were determined to be(15.41±0.17) μS/cm,(18.93±0.13) μS/cm and(9.45±0.09) μS/cm. The conductivity of peanut oil added by different proportions of rapeseed oil and corn oil changed,and the fitting relationship between peanut oil content in the adulterated oil and conductivity was good. The models of intermixing in different proportions can realize quantitative analysis of edible oils. It had good prediction and recognition ability to use conductivity as characteristic information data for pattern recognition of edible oils adulteration.

     

/

返回文章
返回