• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
刘金阳, 谢定, 杨倩圆, 郑瑞娜. 近红外光谱法快速测定榨菜中亚硝酸盐含量[J]. 食品工业科技, 2019, 40(6): 245-251. DOI: 10.13386/j.issn1002-0306.2019.06.041
引用本文: 刘金阳, 谢定, 杨倩圆, 郑瑞娜. 近红外光谱法快速测定榨菜中亚硝酸盐含量[J]. 食品工业科技, 2019, 40(6): 245-251. DOI: 10.13386/j.issn1002-0306.2019.06.041
LIU Jin-yang, XIE Ding, YANG Qian-yuan, ZHENG Rui-na. Rapid Detection of Nitrite Contents in Mustard Tuber by Near Infrared Spectroscopy[J]. Science and Technology of Food Industry, 2019, 40(6): 245-251. DOI: 10.13386/j.issn1002-0306.2019.06.041
Citation: LIU Jin-yang, XIE Ding, YANG Qian-yuan, ZHENG Rui-na. Rapid Detection of Nitrite Contents in Mustard Tuber by Near Infrared Spectroscopy[J]. Science and Technology of Food Industry, 2019, 40(6): 245-251. DOI: 10.13386/j.issn1002-0306.2019.06.041

近红外光谱法快速测定榨菜中亚硝酸盐含量

Rapid Detection of Nitrite Contents in Mustard Tuber by Near Infrared Spectroscopy

  • 摘要: 为研究利用傅立叶近红外光谱分析仪(NIRS)快速测定市售榨菜中亚硝酸盐的含量,先取榨菜样品按GB5009.33-2016测定其亚硝酸盐含量,再向榨菜样品中添加亚硝酸钠,制成亚硝酸钠浓度范围为0.122~39.0875 mg/kg,浓度梯度为0.66 mg/kg的60个样本校正集;与10个样本预测集采集对应的傅立叶近红外光谱曲线,将光谱信息与实际测量值相关联,利用TQ analyst建模软件进行计算分析。结果表明:建模最优预处理方法为一阶微分(1D)与Savitzky-Golay filter滤波平滑的组合预处理;比较分析偏最小二乘法(PLS)与主成分回归法(PCR)的亚硝酸盐样品建立的光谱模型,数据结果显示采用偏最小二乘法(PLS)的亚硝酸盐组分模型稳定性和预测能力更好;内部交叉验正均方差(RSMECV)、交叉验证决定系数(Rc)、外部预测均方根误差(RMSEP)、预测决定系数(RP)相关系数(r)分别为0.0310、0.9925、0.0141、0.9720、0.9378。经F检验与t检验,与国标所测结果无显著性差异。NIRS检测快速,无损便捷,可用于市售榨菜中亚硝酸盐残留量的定量检测。

     

    Abstract: In order to detect the contents of nitrite in commercial mustard by Fourier-Near infrared spectroscopy (NIRS), the nitrite contents of the mustard sample was determined according to GB5009.33-2016, and then sodium nitrite was added to the mustard sample to prepare a 60-sample calibration set with a sodium nitrite concentration ranging from 0.122 to 39.0875 with a concentration gradient of 0.66.A Fourier NIR spectrum curve corresponding to the 10 sample prediction set acquisitions was used to match the spectral information with actual measurement values, and the calculation analysis was performed by TQ analyst modeling software.The calculation and analysis results showed that the optimal modeling method was the combined preprocessing of the first order differential (1D) and Savitzky-Golay filter smoothing. A comparative analysis of spectral models established by partial least squares (PLS) and principal component regression (PCR) nitrite samples.The data showed that the partial least squares (PLS) nitrite component model had better stability and prediction ability, internal cross-test positive mean square error (RSMECV), cross-validation coefficient (Rc), external prediction root mean square error (RMSEP), prediction coefficient (RP) correlation coefficient (r) were 0.0310, 0.9925, 0.0141, 0.9720 and 0.9378.After the F test and the t-test, there was no significant difference between the results measured by the national standard and the national standard.The NIRS test was rapid, non-destructive and convenient, and could be used for the quantitative detection of nitrite residues in commercial mustard.

     

/

返回文章
返回