• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

融合高光谱和图像深度特征的腊肉分类与检索算法研究

董小栋, 郭培源, 徐盼, 许晶晶

董小栋, 郭培源, 徐盼, 许晶晶. 融合高光谱和图像深度特征的腊肉分类与检索算法研究[J]. 食品工业科技, 2018, 39(23): 255-260,266. DOI: 10.13386/j.issn1002-0306.2018.23.044
引用本文: 董小栋, 郭培源, 徐盼, 许晶晶. 融合高光谱和图像深度特征的腊肉分类与检索算法研究[J]. 食品工业科技, 2018, 39(23): 255-260,266. DOI: 10.13386/j.issn1002-0306.2018.23.044
DONG Xiao-dong, GUO Pei-yuan, XU Pan, XU Jing-jing. Fusing Hyperspectral Features and Image Deep Features for Classification and Retrieval of Meat[J]. Science and Technology of Food Industry, 2018, 39(23): 255-260,266. DOI: 10.13386/j.issn1002-0306.2018.23.044
Citation: DONG Xiao-dong, GUO Pei-yuan, XU Pan, XU Jing-jing. Fusing Hyperspectral Features and Image Deep Features for Classification and Retrieval of Meat[J]. Science and Technology of Food Industry, 2018, 39(23): 255-260,266. DOI: 10.13386/j.issn1002-0306.2018.23.044

融合高光谱和图像深度特征的腊肉分类与检索算法研究

基金项目: 

北京市自然科学基金项目(4122020)。

国家自然科学基金项目(61473009)

详细信息
    作者简介:

    董小栋(1991-),男,硕士,主要从事高光谱图像与食品检测、深度学习等方面的研究,E-mail:115011232850@163.com。

    通讯作者:

    郭培源(1958-),男,博士,教授,主要从事高光谱成像与食品检测等方面的研究,E-mail:ggppyy@126.com。

  • 中图分类号: TS251.1

Fusing Hyperspectral Features and Image Deep Features for Classification and Retrieval of Meat

  • 摘要: 本文以腊肉为实验对象,建立一种融合光谱曲线特征和图像特征的肉类食品分类与检索方法,利用10个3×3的卷积层、3个5×5的卷积层、5个5×5的池化层和2个全连层的CNN模型对高光谱图像进行特征提取,并以交叉熵作为优化目标,同时利用多元散射校正和主成分分析方法(Principal Component Analysis,PCA)对光谱特征进行预处理和特征提取,然后将两种特征进行融合,并将融合特征利用支持向量机(Support Vector Machine,SVM)进行分类。结果表明,直接使用CNN训练好的模型对高光谱图像进行特征提取,利用SVM作为分类器,分类的准确率只有75.6%,融合光谱曲线特征后用SVM进行分类,准确率可达99.2%。此外,本文还计算了被检索样本和标准等级样本特征向量的欧氏距离,完成了腊肉新鲜度等级的检索任务,显示了该方法的可行性和有效性。
    Abstract: Taking the bacon as the experimental object to establish a method of classification and retrieval of meat food with the characteristics of spectral curve and image,and using ten 3×3 convolution layers,three 5×5 convolution layers,five 5×5 pool layers and two full concatenation layers model to feature the hyperspectral image,and the cross entropy was used as the optimization target. The multiple scattering correction and principal component analysis were used to preprocess and feature extraction,then the two features were fused,and the fusion features were classified by Support Vector Machine(SVM). The experimental results showed that only the image features obtained by CNN were considered as input data,and classified by SVM,the accuracy was 75%. However,when the features of hyperspectral curves were fused into the image features and classified by SVM,the accuracy could reach 99.2%. In addition,the Euclidean distance algorithm was used to return the ranked scores for the retrieved samples,which realized the retrieval of freshness levels. The experimental results showed the feasibility and effectiveness of the proposed method. In addition,the Euclidean distance of the retrieved sample and the standard sample feature vector is calculated,which realized the retrieval of freshness levels,which showed the feasibility and effectiveness of the method.
  • 期刊类型引用(2)

    1. 孙婷,田建平,胡新军,罗惠波,黄丹,黄浩平. 基于高光谱成像技术的酿酒高粱品种分类. 食品与发酵工业. 2021(05): 186-192 . 百度学术
    2. 夏杨毅,赵鸾. 高光谱成像技术在肉类安全无损检测的应用研究进展. 食品与生物技术学报. 2020(12): 6-13 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  184
  • HTML全文浏览量:  18
  • PDF下载量:  6
  • 被引次数: 5
出版历程
  • 收稿日期:  2018-01-17
  • 网络出版日期:  2020-11-22
  • 刊出日期:  2018-11-30

目录

    /

    返回文章
    返回
    x 关闭 永久关闭