• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

金电极循环伏安法检测生乳尿素掺杂

赖理智, 陈星光, 邓丹雯, 侯鹏, 黄赣辉

赖理智, 陈星光, 邓丹雯, 侯鹏, 黄赣辉. 金电极循环伏安法检测生乳尿素掺杂[J]. 食品工业科技, 2018, 39(1): 272-275,283. DOI: 10.13386/j.issn1002-0306.2018.01.049
引用本文: 赖理智, 陈星光, 邓丹雯, 侯鹏, 黄赣辉. 金电极循环伏安法检测生乳尿素掺杂[J]. 食品工业科技, 2018, 39(1): 272-275,283. DOI: 10.13386/j.issn1002-0306.2018.01.049
LAI Li-zhi, CHEN Xing-guang, DENG Dan-wen, HOU Peng, HUANG Gan-hui. Detection for urea in raw milk on a gold electrode through cyclic voltammetry[J]. Science and Technology of Food Industry, 2018, 39(1): 272-275,283. DOI: 10.13386/j.issn1002-0306.2018.01.049
Citation: LAI Li-zhi, CHEN Xing-guang, DENG Dan-wen, HOU Peng, HUANG Gan-hui. Detection for urea in raw milk on a gold electrode through cyclic voltammetry[J]. Science and Technology of Food Industry, 2018, 39(1): 272-275,283. DOI: 10.13386/j.issn1002-0306.2018.01.049

金电极循环伏安法检测生乳尿素掺杂

基金项目: 

国家自然科学基金项目(13006748)。

详细信息
    作者简介:

    赖理智(1991-),女,研究生,研究方向:电化学方法检测掺杂乳,E-mail:lailizhi@outlook.com。

    通讯作者:

    黄赣辉(1967-),男,博士,教授,研究方向:电化学人工智能识别,E-mail:huangganhui@163.com。

  • 中图分类号: TS252.7

Detection for urea in raw milk on a gold electrode through cyclic voltammetry

  • 摘要: 通过循环伏安法测定尿素及其掺入生乳中的电化学特性,分析电极界面信息表征。结果表明:当扫描速率为1~25 mV/s时,纯尿素溶液的响应特征为单峰,且峰电位随扫速增大而负移,峰电流值与ν1/2呈线性关系(Ipc=5.7410ν1/2-0.07706,r=0.99784;Ipc=18.9488ν1/2-1.1299,r=0.99086),其电极过程为不可逆过程,经计算可得其反应电子数和质子数均为1,交换系数α为0.558,电化学速率常数ks为0.43207±0.0001 s-1。在生乳中掺尿素后,将三氯乙酸加入掺杂乳混匀,再离心除去脂肪和蛋白质得清澈液,经检测清澈液可知,当掺杂尿素浓度为0.3~2.5 mol/L时,其浓度与峰电流值呈线性关系(Ipc=7.7847+3.3098C/(mol/L),r=0.9945)。该方法对尿素的检出限为0.171 mol/L,与其他测定方法相比,此法样品预处理简单、测定速度快、成本低,能较好的运用于实际生产线。
    Abstract: Through Cyclic Voltammetry, electrochemical characteristics of urea and its mixture with raw milk were detected, and the electrode interface information was analyzed. The results showed that, when the scanning rate was 1~25 mV/s, the response characteristic of pure urea solution was a single peak, and the peak potential decreased linearly with the increasing of scanning rate. The peak current value was linear with ν1/2(Ipc=5.7410ν1/2-0.07706, r=0.99784;Ipc=18.9488ν1/2-1.1299, r=0.99086). The electrode process was irreversible. After calculation, the reaction's electron number and proton number were both 1, switching coefficient(α)was 0.558, and the electrochemistry rate constant(Ks)was 0.43207±0.0001 s-1. After mixing the urea into raw milk, the trichloroacetic acid was added to the doped milk, and blended. Clear liquid was obtained by centrifugation that removed the fat and protein. After the clear liquid was tested, it can be seen that, when the concentration of urea mixture was 0.3~2.5 mol/L, urea's concentration had a linear relationship with the peak current value(Ipc=7.7847+3.3098C/(mol/L), r=0.9945). This method's detectability to urea was 0.171 mol/L. Compared with other methods, the pretreatment of this method was simple;the measurement speed was fast;the cost was low and it can be better applied to the industrial line.
  • [1] 李强强,朱丹,逄秀梅,等.牛乳中掺假外源氮类物质检测技术研究[J].农产品质量与安全,2015(4):48-53.
    [2] 杜彦山.牛奶中尿素含量的测定[J].食品研究与开发,2008,29(10):90-93.
    [3] 翟永信.食品掺伪监测方法[M].北京:北京大学出版社,2002:127-129.
    [4] 姚俊卿,丁伟.牛奶中掺入尿素、白明胶等非电解质及病理乳的检验方法[J].中国畜牧兽医,2005,32(7):19-21.
    [5] 黄报亮,吴清平,邓金花,等.尿素检测方法的研究进展及其快速检测产品现状[J].光谱实验室,2013,30(5):2565-2571.
    [6] 魏峰,马振山,贾中辉.牛奶中掺入尿素的两种快速检测方法[J].食品工程,2006(1):58-60.
    [7] 范志影,刘宏超,朱超.对二甲氨基苯甲醛为显色剂分光光度法测定牛奶中尿素[J].分析实验室,2009,28(Z):313-315.
    [8] 宋丹,朴仁官,丁毅,等.牛奶中尿素现场快速检测方法的研究[J].现代科学仪器,2011(4):35-38.
    [9]

    Lima M J,Fernandes R. Enzymatic determination of urea in milk by sequential injection with spectrophotometric and conductometric detection[J]. Journal of Agricultural and Food Chemistry,2003,52:6887-6890.

    [10]

    Ali S M U,Ibupoto Z H,Salman S,et al. Selective determination of urea using urease immobilized on ZnO nanowires[J]. Sensors and Actuators B:Chemical,2011,160:637-643.

    [11]

    Santos P,Pereira-Filho E R,Rodriguez-Saona L E. Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis[J]. Food chemistry,2013,138:19-24.

    [12]

    Santos P,Pereira-Filho E R,Rodriguez-Saona L E. Application of hand-held and portable infrared spectrometers in bovine milk analysis[J]. Journal of Agricultural and Food Chemistry,2013,61:1205-1211.

    [13]

    Liu J,Ren J,Liu J M,et al. A new comprehensive index for discriminating adulteration in bovine raw milk[J]. Food chemistry,2015,172:251-256.

    [14] 宋薇,张姝,陈晓旭,等.高效液相色谱-荧光检测器法测定乳和乳粉中尿素含量[J].乳业科学与技术,2014,37(1):23-26.
    [15]

    Macmahon S,Begley T H,Diachenko G W,et al. A liquid chromatography-tandem mass spectrometry method for the detection of economically motivated adulteration in protein-containing foods[J]. Journal of Chromatography A,2012,1220:101-107.

    [16]

    Grant A,Kerianne H. Rapid detection of economic adulterants in fresh milk by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A,2013,1288:10-20.

    [17] 田师一.多频脉冲电子舌系统构建及应用[D].杭州:浙江工商大学,2007.
    [18]

    Laurinavicius V,Razumiene J,Gureviciene V. Bioelectrochemical conversion of urea on carbon black electrode and application[J]. Ieee sensors journal,2013,13(6):2209-2231.

    [19]

    Ramesh R,Puhazhendi P,Kumar J,et al. Potentiometric biosensor for determination of urea in milk using immobilized Arthrobacter creatinolyticus urease[J]. Materials Science and Engineering C,2015,49:786-792.

    [20]

    Trivedi U B,Lakshminarayana D,Kothary I L,et al. Potentiometric biosensor for urea determination in milk[J]. Sensors and Actuators B:Chemical,2009,140:260-266.

    [21] 黄赣辉,石磊,曾祥盛,等.综合型传感器阵列对掺杂生乳的识别[J].食品工业科技,2014,35(6):63-72.
    [22] 石磊,曾祥盛,彭冬英,等.生乳、巴氏乳与酸败乳的电化学识别研究[J].食品工业科技,2011(12):468-475.
    [23]

    Laviron E. Adsorption,autoinhibition and autocatalysis in polaro-graphy and in linear potential sweep voltammetry[J]. Electroanalytical chemistry and interfacial electrochemistry,1974,52:355-393.

    [24] 阿伦. J.巴德,拉里. R.福克纳.电化学方法原理和应用[M].第2版.北京:化学工业出版社,2005:23-25.
    [25]

    Wang S F,Xu Q. Electrochemical parameters of ethamsylate at multi-walled carbon nanotube modified glassy carbon electrodes[J]. Bioelectrochemistry,2007,70:296-300.

    [26]

    Jianwei Qin,Kuanglin Chao,Moon S. Kim. Simultaneous detection of multiple adulterants in dry milk using macro-scale Raman chemical imaging[J]. Food Chemistry,2013,138:998-1007.

    [27]

    Yongjie Ma,Wenbin Dong,Hongliang Bao,et al. Simultaneous determination of urea and melamine in milk powder by nonlinear chemical fingerprint technique[J]. Food Chemistry,2017,221:898-906.

  • 期刊类型引用(10)

    1. 许壮,丁青芝,戴意强,王喆,刘振田,陈小阳,虞利俊,夏秀东. 点浆条件对酸浆豆腐品质的影响. 中国粮油学报. 2024(01): 65-74 . 百度学术
    2. 梁浩斌. 食品凝固剂对豆腐制品的应用. 现代食品. 2024(13): 64-66+70 . 百度学术
    3. 杜贺超,韩梦灵,李雯倩,杨滨榕,王楠楠,姚宏亮. 乳酸菌发酵杏仁豆腐及其品质评价. 金陵科技学院学报. 2024(04): 77-84 . 百度学术
    4. 龚周亮,赵良忠,刘汁琪,林碧莲,周劲松,刘斌斌. 巴氏杀菌后湘派豆干货架期内品质变化及微生态分析. 中国食品工业. 2023(07): 104-107 . 百度学术
    5. 谢秀玲,金宏杏,杞文静,邱柱红,苏海香,朱建凯. 豆腐酸性凝固剂的研究进展. 食品安全导刊. 2023(31): 182-184+192 . 百度学术
    6. 农双宁,谢文佩,郭茵,卢定环,严晓敏,陈超恒,施明月,班红玲. 响应面优化百香果豆腐的加工工艺及品质研究. 食品研究与开发. 2022(11): 164-170 . 百度学术
    7. 刘宁,高艺笑,孙钰姬,张笑,张铁鹏,杨婷婷,潘任. 豆腐凝固剂的研究进展. 中国调味品. 2021(03): 189-194 . 百度学术
    8. 吴江,张奎林,夏湘,赵良忠,彭洁. 质构重组大豆分离蛋白-鸡肉双蛋白肉工艺条件研究. 食品安全导刊. 2021(14): 60-64 . 百度学术
    9. 伍涛,彭希林,赵良忠,陈浩,周晓洁,黄展锐,周小虎. 湘派豆干及卤汁在卤制过程中的变化规律. 食品与发酵工业. 2021(19): 146-154 . 百度学术
    10. 何婉莹,黄展锐,赵良忠,刘海宇,周小虎,陈浩,周晓洁. 生浆法制作豆腐的工艺优化. 现代食品科技. 2021(10): 188-196 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  194
  • HTML全文浏览量:  19
  • PDF下载量:  3
  • 被引次数: 11
出版历程
  • 收稿日期:  2017-06-15
  • 网络出版日期:  2020-12-28
  • 刊出日期:  2017-12-31

目录

    /

    返回文章
    返回
    x 关闭 永久关闭