Effects of physical modification on physicochemical properties of insoluble dietary fiber from oat bran
-
摘要: 通过分析物理改性对燕麦麸皮不溶性膳食纤维特性的影响,为进一步研究水不溶性燕麦麸皮膳食纤维的保健功能提供科学依据。采用以500 MPa 20 min 60℃超高压、1500 W 30 min超声波及其联合的方法处理不溶性膳食纤维,分析了物理改性对燕麦麸皮不溶性膳食纤维比面积和粒度、持油性、持水性、膨胀度、悬浮粘度、离子交换能力的影响。结果表明:超高压联合超声波处理比两者单独处理效果显著(p<0.05),以1%燕麦麸皮IDF为例,两者联合处理能显著(p<0.05)增加燕麦麸皮不溶性膳食纤维比面积13.49倍、持油性2.92倍、膨胀度、粘度值和阳离子交换能力,减少纤维粒度2.8倍,减少持水性2.25倍(持水性以16%燕麦麸皮IDF为例)。因此认为物理改性能加大燕麦麸皮不溶性膳食纤维的综合利用,提高农产品的附加值和食品资源的再利用程度。Abstract: The aim of the present study was to investigate the effect of physical modification on the properties of insoluble dietary fiber from oat bran, which might be theoretical basis for further research on the health function of insoluble oat bran dietary fiber. The physicochemical properties of oat bran insoluble dietary fibers, including specific area and particle size, oil holding capacity, water holding capacity, swelling degree, suspension viscosity and cation exchange capacity, were analyzed under the treatment of 500 MPa 20 min 60 ℃ ultra high pressure, 1500 W 30 min ultrasonic and ultra high pressure with ultrasonic.Results showed that the physical modification of ultra high pressure with ultrasonic was significantly more effective than the separate treatment of ultra high pressure or ultrasonic ( p < 0.05) . Taking 1% oat bran IDF as an example, the both treatment of ultra high pressure with ultrasonic treatment can significantly ( p < 0.05) increase the specific area of 13.49 times, holding oil capacity 2.92 times, swelling degree, viscosity and cation exchange capacity of the oat bran insoluble dietary fiber, and reduce fiber size 2.8 times and water holding capacity 2.25 times ( water holding capacity was taking 16% oat bran IDF as an example) .Therefore, it was considered that the physical modification would increase the comprehensive utilization of oat bran insoluble dietary fiber, increase the added value of agricultural products and reuse the food resources.
-
Keywords:
- physical modification /
- oat /
- wheat bran /
- insoluble dietary fiber
-
[1] Micha R, Shulkin M L, Pe1alvo J L, et al.Etiologic effects and optimal intakes of foods and nutrients for risk of cardiovascular diseases and diabetes:Systematic reviews and meta-analyses fromthe Nutrition and Chronic Diseases Expert Group (Nutri Co DE) [J].PLo S One, 2017, 12 (4) :e0175149.
[2] Burton Freeman B, Liyanage D, Rahman S, et al.Ratios of soluble and insoluble dietary fibers on satiety and energy intake in overweight pre-and postmenopausal women[J].Nutrition and Healthy Aging, 2017, 4 (2) :157-168.
[3] Pérez-López E, Mateos-Aparicio I, Rupérez P.Determination of soluble dietary fibre content of Okara treated with high hydrostatic pressure and enzymes:a comparative evaluation of two methods (AOAC and HPLC-ELSD) [J].Journal of Food Science&Technology, 2017, 54 (5) :1333-1339.
[4] Chen S, Chen Y, Ma S, et al.Dietary fibre intake and risk of breast cancer:A systematic review and meta-analysis of epidemiological studies[J].Oncotarget, 2016, 7 (49) :80980-80989.
[5] Liu C, Lin X L, Wan Z, et al.The physicochemical properties, in vitro binding capacities and in vivo hypocholesterolemic activity of soluble dietary fiber extracted from soy hulls[J].Food&Function, 2016, 7 (12) :4830-4840.
[6] 中国营养学会.中国居民膳食营养素参考摄入量 (2013版) [M].北京:科学出版社, 2014. [7] Surampudi P, Enkhmaa B, Anuurad E, et al.Lipid Lowering with Soluble Dietary Fiber[J].Current Atherosclerosis Reports, 2016, 18 (12) :75.
[8] Isken F, Klaus S, Osterhoff M, et al.Effects of long-term solublevs insoluble dietary fiber intake on high fat diet-induced obesity in C57BL/6Jmice[J].The Journal of Nutritional Biochemistry, 2010, 21 (4) :278-284.
[9] 朱国君, 赵国华.膳食纤维改性研究进展[J].粮食与油脂, 2008 (4) :40-42. [10] 丁莎莎, 黄立新, 张彩虹, 等.油橄榄果渣水不溶性膳食纤维结构表征及体外吸附性能研究[J].食品工业科技, 2017, 371 (3) :108-112. [11] Peerajit P, Chiew chan N, Devahastin S.Effects of pretreatment methods on health-related functional properties of high dietary fibre powder from lime residues[J].Food Chemistry, 2012, 132 (4) :1891-1898.
[12] 郭文奎, 焦月华, 刘飞.小米和燕麦中水溶性膳食纤维结构表征及对体外发酵体系短链脂肪酸的影响[J].食品科技, 2017, 305 (3) :190-194. [13] Liu W, Fu Y J, Zu Y G, et al.Supercritical carbon dioxide extraction of seed oil from Opuntia dillenii, Haw.and its antioxidant activity[J].Food Chemistry, 2009, 114 (1) :334-339.
[14] 刘德讲, 郑晓吉, 朱丽莉.燕麦麸膳食纤维提取工艺的研究[J].保鲜与加工, 2013, 13 (3) :37-41. [15] 胡晓平, 杨爱华, 王成忠, 等.辣椒膳食纤维的低温超高压改性[J].中国调味品, 2013, 38 (3) :60-68. [16] 宋维春, 徐云升, 卢凌彬, 等.超声波提取香蕉茎干中水溶性膳食纤维的研究[J].食品工业科技, 2009, 30 (3) :220-222. [17] 龚卫华, 向卓亚, 叶发银, 等.麻竹笋笋壳中木质素的理化特性[J].食品科学, 2017, 38 (9) :59-65. [18] 李新平, 朱晶航, 王转, 等.酶预处理纤维形貌尺寸和比表面积的变化方式及规律[J].陕西科技大学学报 (自然科学版) , 2017, 1 (2) :1-5, 22. [19] 郭亮, 王艳华, 隋连敏.纤维滤袋技术对猪体外玉米蛋白粉养分消化的影响[J].中国饲料, 2005, 1 (2) :22-24, 36. [20] 王燕云, 吴凯, 雷福厚, 等.Na OH-Fenton试剂预处理桑木的纤维素酶分段酶水解研究[J].生物质化学工程, 2016, 50 (4) :31-36. [21] 金文筠, Hussain Shehzad, 严守雷, 等.超微粉碎对藕节膳食纤维理化性质的影响[J].食品安全质量检测学报, 2015, 6 (6) :2071-2076. [22] Labuza T P.Sorption phenomenon in foods[J].Food technology, 1968, 22 (3) :215.
[23] 李丽, 李庆龙, 常宪辉.小麦膳食纤维持水/膨胀力及吸附特性的研究[J].粮食加工, 2008, 1 (5) :14-16, 29. [24] 齐惠, 倪春蕾, 尹园, 等.不同处理方法对豆渣水溶性膳食纤维结构与功能的影响[J].食品工业科技, 2016, 355 (11) :62-66. [25] Raghavendra S, Swamy S R, Rastogi N, et al.Grinding characteristics and hydration properties of coconut residue:a source of dietary fiber[J].Journal of Food Engineering, 2005, 72 (3) :281-286.
[26] 郭凤倩, 黄祖顺, 朱宝磊, 等.忍冬藤可溶性膳食纤维提取及性能分析[J].山东科学, 2017, 144 (1) :20-25.
计量
- 文章访问数: 209
- HTML全文浏览量: 26
- PDF下载量: 463