• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

白果微波干燥特性及干燥动力学模型研究

毛志幸, 孙辉, 陈宗道

毛志幸, 孙辉, 陈宗道. 白果微波干燥特性及干燥动力学模型研究[J]. 食品工业科技, 2017, (22): 11-16. DOI: 10.13386/j.issn1002-0306.2017.22.003
引用本文: 毛志幸, 孙辉, 陈宗道. 白果微波干燥特性及干燥动力学模型研究[J]. 食品工业科技, 2017, (22): 11-16. DOI: 10.13386/j.issn1002-0306.2017.22.003
MAO Zhi-xing, SUN Hui, CHEN Zong-dao. Study on the microwave drying characteristics and drying kinetics model of Ginkgo biloba[J]. Science and Technology of Food Industry, 2017, (22): 11-16. DOI: 10.13386/j.issn1002-0306.2017.22.003
Citation: MAO Zhi-xing, SUN Hui, CHEN Zong-dao. Study on the microwave drying characteristics and drying kinetics model of Ginkgo biloba[J]. Science and Technology of Food Industry, 2017, (22): 11-16. DOI: 10.13386/j.issn1002-0306.2017.22.003

白果微波干燥特性及干燥动力学模型研究

详细信息
    作者简介:

    毛志幸 (1986-) , 男, 本科, 网络工程师, 研究方向:农业机械化工程, E-mail:mao_z_x@163.com。;

    孙辉 (1986-) , 女, 博士研究生, 讲师, 研究方向:食品化学与营养学, E-mail:636939.sunhui@163.com。;

  • 中图分类号: TS255.3

Study on the microwave drying characteristics and drying kinetics model of Ginkgo biloba

  • 摘要: 利用微波干燥技术,以干基含水率、干基失水速率和感官评分为指标,采用单因素实验确定微波功率和装载量对白果干燥特性的影响。结果表明,微波功率与装载量比值(微波功率密度)越大,白果干燥时间越短,微波功率密度>10 W·g-1或<6 W·g-1,白果微波干燥过程分为加速和降速阶段,而微波功率密度在4.719.19 W·g-1干燥过程分为加速、恒速和降速阶段;载重量60.0 g,微波功率385 W(微波功率密度6.42 W·g-1)时,白果感官综合评分(7分)最佳。运用Matlab软件建立白果的微波干燥的水分比与干燥时间的动力学模型,进行回归拟合检验结果表明,白果干燥过程符合Page模型,模型相关系数为0.999,所得方程能够用于各阶段对干燥速率进行描述。 
    Abstract: Using the microwave drying technology, this paper took moisture content, misture loss rate and sensory score as evalution indexs standard, and made a single factor experiment to define the suitable microwave power and material load witch to affect the drying properties of ginkgo fruit.Result showed that the ratio of microwave power to material load (microwave power density) , higher microwave power density carried out to shorter drying time.Microwave power density of>10 W·g-1or<6 W·g-1, the microwave drying subsection process of ginkgo fruit was contained two stages:speed-up and speed-down, while microwave power density in the 4.719.19 W·g-1, the microwave drying subsection process of ginkgo fruit was contained three stages:speed-up, constant-speed and speed-down.Material load 60.0 g, microwave power 385 W (microwave power density6.42 W·g-1) , the best sensory quality score of dried products was 7.A kinetic model of moisture content and action time of microwave drying of ginkgo was established by Matlab based on experimental data and test of fit was carried out for the model.Results showed that model of page could accurately describe the microwave drying process of ginkgo fruit, coefficients of models were above 0.999 and the moisture content and drying rate at each period could be described by the equation obtained.
  • [1] 姚芳, 刘靖, 展跃平, 等.银杏肉脯加工技术研究[J].食品工业科技, 2010, 31 (10) :247-250.
    [2] 李大勇, 陈曼华, 孙汉巨, 等.银杏牛奶双蛋白饮料的工艺研究[J].安徽农业科学, 2011, 39 (36) :22592-22594.
    [3]

    Li Enguang, Tian Jun, Xu Zhonghua.Effects of gingko biloba extract (EGb 761) on vascular smooth muscle cell calcification induced byβ-glycerophosphate[J].Renal Failure, 2016, 38 (4) :1-6.

    [4]

    Wu Caie, Yang Jianting, Fan Gongjian, et al.Allergic identification for ginkgo kernel protein in guinea pigs[J].Food Science and Biotechnology, 2016, 25 (3) :915-919.

    [5] 张黎骅, 徐中明, 夏磊, 等.银杏果热风干燥工艺参数响应面法优化[J].农业机械学报, 2012, 43 (3) :140-145.
    [6] 张彩虹, 黄立新, Mjumdar A S.白果浆喷雾干燥工艺研究[J].林产化学与工业, 2010, 30 (2) :17-22.
    [7] 张彩虹.白果喷雾干燥及其对产品质量影响的研究[D].北京:中国林业科学研究院, 2010.
    [8]

    Mishra R R, Sharma A K.Microwave-material interaction phenomena:Heating mechanisms, challenges and opportunities in material processing[J].Composites Part A Applied Science and Manufacturing, 2016, 81 (2) :78-97.

    [9]

    Zielinska M, Michalska A.Microwave-assisted drying of blueberry (vaccinium corymbosum L.) fruits:Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture[J].Food Chemistry, 2016, 212 (12) :671-680.

    [10]

    Silva A C D, Sarturi H J, Dall’Oglio E L, et al.Microwave drying and disinfestation of brazil nut seeds[J].Food Control, 2016, 70 (12) :119-129.

    [11]

    Cuccurullo G, Giordano L, Albanese D, et al.Infrared thermography assisted control for apples microwave drying[J].Journal of Food Engineering, 2012, 112 (4) :319-325.

    [12]

    Vandeweyer D, Lenaerts S, Callens A, et al.Effect of blanching followed by refrigerated storage or industrial microwave drying on the microbial load of yellow mealworm larvae (tenebrio molitor) [J].Food Control, 2017, 71 (1) :311-314.

    [13]

    Yan Weiqiang, Zhang Min, Huang Luelue, et al.Studies on different combined microwave drying of carrot pieces[J].International Journal of Food Science and Technology, 2010, 45 (10) :2141-2148.

    [14] 马锦, 芈韶雷, 朱德泉, 等.山核桃微波干燥动力学模型研究[J].食品工业科技, 2015 (5) :108-112.
    [15] 张黎骅, 刘波, 刘涛涛, 等.银杏果微波间歇干燥特性及动力学模型研究[J].食品工业科技, 2013, 34 (18) :127-131.
    [16]

    Chayjan R A, Alaei B.New model for colour kinetics of plum under infrared vacuum condition and microwave drying[J].2016, 15 (2) :131-144.

    [17]

    Wojdyo A, Figiel A, Legua P, et al.Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method[J].Food Chemistry, 2016, 207 (9) :170-179.

    [18]

    Torkiharchegani M, Ghanbarian D, Pirbalouti A G, et al.Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments[J].Renewable and Sustainable Energy Reviews, 2016, 58 (5) :407-418.

    [19]

    Szadzińska J, Kowalski S J, Stasiak M.Microwave and ultrasound enhancement of convective drying of strawberries:Experimental and modeling efficiency[J].International Journal of Heat and mass Transfer, 2016, 103 (12) :1065-1074.

    [20]

    Loredana M, Gaetano L, Annaangela B, et al.Combined convective and microwave assisted drying:Experiments and modeling[J].Journal of Food Engineering, 2012, 112 (4) :304-312.

    [21]

    Zielinska M, Zapotoczny P, Alves-Filho O, et al.A multistage combined heat pump and microwave vacuum drying of green peas[J].Journal of Food Engineering, 2013, 115 (3) :347-356.

    [22]

    Safary M, Chayjan R A.Optimization of almond kernels drying under infrared-vacuum condition with microwave pretreatment using response surface method and genetic algorithm[J].Safary and Chayjan, 2016, 18 (6) :1543-1556.

    [23]

    Aral S, Be?e A V.Convective drying of hawthorn fruit (Crataegus spp.) :Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity[J].Food Chemistry, 2016, 210 (11) :577-584.

    [24]

    Su Ya, Zhang Min, Zhang Weiming, et al.Application of novel microwave-assisted vacuum frying to reduce the oil uptake and improve the quality of potato chips[J].LWT-Food Science and Technology, 2016, 73 (11) :490-497.

    [25] 唐小闲, 罗杨合, 汤泉, 等.马蹄湿淀粉微波干燥的实验研究[J].食品工业科技, 2017, 38 (11) :107-110.
    [26] 王贤华, 陈汉平, 张世红, 等.生物质微波干燥及其对热解的影响[J].燃料化学学报, 2011, 39 (1) :14-20.
    [27] 赵莹婷, 王为为, 庄玮婧, 等.莲子微波真空干燥特性及其微观结构的分形特征[J].现代食品科技, 2016 (8) :213-218.
    [28] 曹小红, 常学东.板栗的微波干燥特性及其对干后品质的影响[J].食品工业科技, 2005, 26 (1) :63-65.
计量
  • 文章访问数:  140
  • HTML全文浏览量:  7
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-31

目录

    /

    返回文章
    返回
    x 关闭 永久关闭