Influence of microwave assisted foam mat drying conditions on drying characteristics of raspberry puree
-
摘要: 为了研究微波泡沫干燥树莓果浆传热传质特性,以树莓为原料,采用中心组合实验设计方法,研究干燥条件对物料温度、含水率以及介电特性的影响规律,分析微波泡沫干燥过程中传热传质过程。结果表明:微波泡沫干燥树莓果浆过程中,干燥初期,介电常数与介电损耗因子均增大,使得物料吸收的微波能增大,果浆温度由室温上升至70℃,含水率无明显变化;干燥中期,介电常数与介电损耗因子先增大后减小,因此物料吸收的微波能呈先增大后减小趋势,果浆含水率由90%降至40%,温度变化不明显;干燥后期,介电常数与介电损耗因子均减小,物料吸收的微波能减少,果浆含水率缓慢降至15%左右,温度继续升高。微波泡沫干燥方法可有效提高高粘度果浆的干燥速度。Abstract: To study the heat and mass transfer characteristics of microwave assisted foam mat drying ( MFD) berry puree, raspberries were used as raw material and the two orthogonal rotation center combination design was used in this study. The effects of drying conditions on the temperature, moisture content and dielectric properties were analyzed based on the law of heat and mass transfer in MFD. In the initial stage of MFD, the dissipation of microwave energy related to the dielectric constant, dielectric loss factor increased inside berry puree.Till the drying temperature of 70 ℃, the moisture content of berry puree had no obvious change.In the middle stage of MFD, the dielectric constant and dielectric loss factor of berry puree tended increasing trend followed by a decreased.There was no significant change of temperature and the moisture content changed from90% to 40%.In the later stage of MFD, the dielectric constant, the dielectric loss factor and the microwave energy absorbed by material decreased, and the moisture content of berry puree slowly decreased till 15%, but the temperature of berry puree tended to increasing trend.High efficiency of drying treatment could be achieved for the berry puree with high viscosity in the conditions of MFD.
-
[1] 刘秉欣, 李秀伟, 陶岩, 等.喷液包埋技术提高微波泡沫干燥后树莓浆果品质[J].农业工程学报, 2014, 30 (18) :325-334. [2] Radocˇaj O, Vujasinovic'V, Dimic'E, et al.Blackberry (Rubus fruticosus L.) and raspberry (Rubus idaeus L.) seed oils extracted from dried press pomace after long term frozen storage of berries can be used as functional food ingredients[J].European Journal of Lipid Science and Technology, 2014, 116 (8) :1015-2024.
[3] 张强, 辛秀兰, 杨富民, 等.红树莓果醋酿造过程中抗氧化性能的变化[J].食品科学, 2016, 37 (3) :6-11. [4] Thuwapanichayanan R, Prachayawarakorn S, Kunwisawa J, et al.Determination of effective moisture diffusivity and assessment of quality attributes of banana slices during drying[J].LWT-Food Science and Technology, 2011, 44 (6) :1502-1510.
[5] 黄燕, 程裕东, 梁凯.微波、热风干燥对橙皮干燥特性及其品质影响的比较[J].食品科学, 2009, 30 (21) :16-20. [6] 孙宇, 郑先哲, 李强, 等.微波辅助泡沫干燥蓝靛果果粉工艺的研究[J].东北农业大学学报, 2012, 43 (5) :17-23. [7] Zheng X Z, Liu C H, Zhou H.Optimization of parameters for microwave-assisted foam mat drying of blackcurrant pulp[J].Drying Technology, 2011, 29 (2) :230-238.
[8] Bórquez R M, Canales E R, Redon J P.Osmotic dehydration of raspberries with vacuum pretreatment followed by microwavevacuum drying[J].Journal of Food Engineering, 2010, 99 (2) :121-127.
[9] Hangi A K, Amanifard N.Analysis of heat and mass transfer during microwave drying of food products[J].Brazilian Journal of Chemical Engineering, 2008, 25 (3) :491-501.
[10] 郑先哲, 刘成海, 周贺.黑加仑果浆微波辅助泡沫干燥特性[J].农业工程学报, 2009, 25 (8) :288-293. [11] Djaeni M, Prasetyaningrum A, Sasongko S B, et al.Application of foam-mat drying with egg white for carrageenan:drying rate and product quality aspects[J].Journal of Food Science and Technology, 2015, 52 (2) :1170-1175.
[12] 王宏业.黑加仑果浆微波辅助泡沫干燥系统研究[D].哈尔滨:东北农业大学, 2011. [13] Lobo F A, Nascimento M A, Domingues J R, et al.Foam mat drying of Tommy Atkins mango:Effects of air temperature and concentrations of soy lecithin and carboxymethylcellulose on phenolic compositin, mangiferin, and antioxidant capacity[J].Food Chemistry, 2017, 221:258-266.
[14] 唐辉, 李梦雨, 陈文学, 等.番木瓜果浆微波辅助泡沫干燥过程中营养成分降解模型[J].食品工业科技, 2016, 37 (11) :89-95. [15] Kandasamy P, Varadharaju N, Kalemullah S, et al.Optimization of process parameters for foam-mat drying of papaya pulp[J].Journal Food Science and Technology, 2014, 51 (10) :2526-2534.
[16] Sangamithra A, Venkatachalam S, Kuppuswamy K, et al.Foam mat drying of muskmelon[J].International Journal of Food Engineering, 2015, 11 (1) :127-137.
[17] Salahi M R, Mohebbi M, Taghizadeh M.Foam-Mat Drying of Cantaloupe (Cucumis melo) :Optimization of Foaming Parameters and Investigating Drying Characteristics[J].Journal of Food Processing and Preservation, 2015, 39 (6) :1798-1808.
[18] Lyng J G, Arimi J M, Scully M, et al.The influence of compositional changes in reconstituted potato flakes on thermal and dielectric properties and temperatures following microwave heating[J].Journal of Food Engineering, 2014, 124:133-142.
[19] Kowalski S J, Grzegorz M, Jacek B.Heat and mass transfer during microwave-convective drying[J].American Institute of Chemical Engineers, 2010, 56 (1) :24-35.
[20] 李秀伟.浆果微波泡沫干燥品质研究及过程模拟[D].哈尔滨:东北农业大学, 2015. [21] Kumar R, Jose M, Singha G N, et al.RF characterization and testing of ridge waveguide transitions for RF power couplers[J].Nuclear Instruments and Methods in Physics Research Section A, 2016, 838:66-73.
[22] Chouhan S S, Halonen K.Alternative approach to design matching network for differential drive rectifier used in RF energy harvesting[J].Microelectronics Journal, 2016, 58:39-43.
[23] Zheng X Z, Wang Y K, Liu C H, et al.Microwave energy absorption behavior of foamed berry puree under microwave drying conditions[J].Drying Technology, 2013, 31 (7) :785-794.
[24] Botha G E, Oliveira J C, AhrnéL.Microwave assisted air drying of osmotically treated pineapple with variable power programmes[J].Journal of Food Engineering, 2012, 108 (2) :304-311.
[25] 张赛.多孔材料毛细孔收缩热质传递及分形特性研究[D].昆明:昆明理工大学, 2014. [26] Francoa T S, Perussellob C A, Ellendersena L S N, et al.Foam mat drying of yacon juice:Experimental analysis and computer simulation[J].Journal of Food Engineering, 2015, 158:48-57.
[27] 郭文川, 王婧, 朱新华.基于介电特性的燕麦含水率预测[J].农业工程学报, 2012, 28 (24) :272-279. [28] 王婧.小杂粮的介电特性与主要影响因素的关系研究[D].杨陵:西北农林科技大学, 2012. [29] 张宝辉.浆果微波辅助泡沫干燥品质和过程模拟研究[D].哈尔滨:东北农业大学, 2014. [30] 林甄.微波加工浆果介电特性研究[D].哈尔滨:东北农业大学, 2013.
计量
- 文章访问数: 221
- HTML全文浏览量: 52
- PDF下载量: 158