• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

组学技术在茶学研究中的应用研究进展

苏小琴, 马燕, 杨秀芳, 孔俊豪, 左小博, 赵明

苏小琴, 马燕, 杨秀芳, 孔俊豪, 左小博, 赵明. 组学技术在茶学研究中的应用研究进展[J]. 食品工业科技, 2017, (18): 333-340. DOI: 10.13386/j.issn1002-0306.2017.18.063
引用本文: 苏小琴, 马燕, 杨秀芳, 孔俊豪, 左小博, 赵明. 组学技术在茶学研究中的应用研究进展[J]. 食品工业科技, 2017, (18): 333-340. DOI: 10.13386/j.issn1002-0306.2017.18.063
SU Xiao-qin, MA Yan, YANG Xiu-fang, KONG Jun-hao, ZUO Xiao-bo, ZHAO Ming. Progress of researches in tea science by omics technologies[J]. Science and Technology of Food Industry, 2017, (18): 333-340. DOI: 10.13386/j.issn1002-0306.2017.18.063
Citation: SU Xiao-qin, MA Yan, YANG Xiu-fang, KONG Jun-hao, ZUO Xiao-bo, ZHAO Ming. Progress of researches in tea science by omics technologies[J]. Science and Technology of Food Industry, 2017, (18): 333-340. DOI: 10.13386/j.issn1002-0306.2017.18.063

组学技术在茶学研究中的应用研究进展

基金项目: 

国家自然科学基金项目(31160174); “十三五”国家重点研发计划项目(2016YFD400805-3);

详细信息
    作者简介:

    苏小琴 (1990-) , 女, 硕士, 研究实习员, 主要从事茶叶生物化学和蛋白质组学方面的研究, E-mail:cecynasu@163.com。;

    赵明 (1979-) , 男, 博士, 教授, 主要从事茶学多组学方面的研究, E-mail:zhaoming02292002@aliyun.com。;

  • 中图分类号: S571.1;TS272

Progress of researches in tea science by omics technologies

  • 摘要: 基因组学、转录组学、蛋白组学和代谢组学等组学技术具有高通量、高灵敏度和系统性的特点,已成为生命科学研究中的强有力工具,也为茶学研究提供了新的方法。研究者应用组学技术开展了茶树栽培育种、种质资源特性、茶叶生理生化、茶叶加工及贮藏等多方面研究,获得了重要进展,本文综述了组学技术在茶学研究中的应用情况。 
    Abstract: Omics technologies including genomics, transcriptomics, proteomics, metabolomics and etc., have characteristics with high-throughput, high sensitivity and systematic.They provided powerful tools in life science research.Omics technologies have been broadly applied in tea science, and provided novel theoretical basis and approaches to study on tea cultivation and breeding, tea germplasm resources of tea plant, physiology and biochemistry of tea plant and tea processing of tea plant.In this work, the progress of researches by omics technology in tea science was reviewed.
  • [1]

    Sánchez B, Ruiz L, Gueimonde M, et al.Omics for the study of probiotic microorganisms[J].Food Research International, 2013, 54 (1) :1061-1071.

    [2]

    Van Aggelen G, Ankley G T, Baldwin W S, et al.Integrating omic technologies into aquatic ecological risk assessment and environmental monitoring:hurdles, achievements, and future outlook[J].Environ Health Perspect, 2010, 118 (1) :1-5.

    [3]

    Zhang X, Wei D, Yap Y, et al.Mass spectrometry-based“omics”technologies in cancer diagnostics[J].Mass Spectrometry Reviews, 2007, 26 (3) :403-431.

    [4]

    Chen L, Zhou Z, Yang Y.Genetic improvement and breeding of tea plant (Camellia sinensis) in China:from individual selection to hybridization and molecular breeding[J].Euphytica, 2007, 154 (1-2) :239-248.

    [5]

    Ho C T, Lin J K, Shahidi F.Tea and tea products:chemistry and health-promoting properties[M].Boca Raton:CRC, 2008.

    [6] 宛晓春.茶叶生物化学[M].北京:中国农业出版社, 2006.
    [7] 李伟, 印莉萍.基因组学相关概念及其研究进展[J].生物学通报, 2000, 35 (11) :1-3.
    [8] 贺纪正, 张丽梅, 沈菊培, 等.宏基因组学的研究现状和发展趋势[J].环境科学学报, 2008, 28 (2) :209-218.
    [9]

    Lyu C, Chen C, Ge F, et al.A preliminary metagenomic study of puer tea during pile fermentation[J].Journal of the Science of Food&Agriculture, 2013, 93 (13) :3165-3174.

    [10] 陈庆金, 黄丽, 滕建文, 等.基于Miseq测序分析六堡茶陈化初期真菌多样性[J].食品科技, 2015, 40 (8) :67-71.
    [11] 徐书泽.六堡茶中真菌的多样性分析[D].南宁:广西大学, 2014.
    [12]

    Fu J, Lv H, Chen F.Diversity and variation of bacterial community revealed by Mi Seq sequencing in chinese dark teas[J].Plos One, 2016, 11 (9) :e0162719.

    [13]

    Zhang Y, Skaar I, Sulyok M, et al.The microbiome and metabolites in fermented pu-erh tea as revealed by highthroughput sequencing and quantitative multiplex metabolite analysis[J].Plos One, 2016, 11 (6) :e157847.

    [14]

    Zhao M, Zhang D, Su X, et al.An integrated metagenomics/metaproteomics investigation of the microbial communities and enzymes in solid-state fermentation of pu-erh tea[J].Scientific Reports, 2015, 5:10117.

    [15] 苏小琴.普洱茶发酵过程微生物群落与蛋白的多组学研究[D].昆明:云南农业大学, 2016.
    [16]

    Abe M, Takaoka N, Idemoto Y, et al.Characteristic fungiobserved in the fermentation process for Puer tea[J].International Journal of Food Microbiology, 2008, 124 (2) :199-203.

    [17] 杨晓苹, 罗剑飞, 刘昕, 等.普洱茶固态发酵过程中微生物群落结构及变化[J].食品科学, 2013, 34 (19) :142-147.
    [18] 刘石泉, 胡治远, 赵运林.用DGGE法初步解析茯砖茶渥堆发酵过程中真菌群落的结构[J].湖南农业大学学报 (自然科学版) , 2014, 40 (5) :494-500.
    [19]

    Xu A, Wang Y, Wen J, et al.Fungal community associated with fermentation and storage of Fuzhuan brick-tea[J].International Journal of Food Microbiology, 2011, 146 (1) :14-22.

    [20] 赵明.普洱熟茶后发酵过程细菌多样性的16S rRNA基因文库研究[A].第十五届中国科协年会第20分会场:科技创新与茶产业发展论坛论文集[C].中国贵州贵阳, 2013:8.
    [21]

    Wang Z, Gerstein M, Snyder M.RNA-Seq:a revolutionary tool for transcriptomics[J].Nature Reviews Genetics, 2009, 10 (1) :57.

    [22]

    Trapnell C, Williams BA, Pertea G, et al.Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J].Nature Biotechnology, 2010, 28 (5) :511-515.

    [23] 付畅, 黄宇.转录组学平台技术及其在植物抗逆分子生物学中的应用[J].生物技术通报, 2011 (6) :40-46.
    [24] 王丹.基于转录组比较探究茶树对茶尺蠖抗性分子机制[D].杭州:中国农业科学院, 2015.
    [25] 上官明珠.茶树miRNA的分离鉴定及其与茶尺蠖取食诱导的差异表达特征研究[D].合肥:安徽农业大学, 2013.
    [26]

    Wang X C, Zhao Q Y, Ma C L, et al.Global transcriptome profiles of Camellia sinensis during cold acclimation[J].BMC Genomics, 2013, 14:415.

    [27]

    Zhang Y, Zhu X, Chen X, et al.Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis[J].BMC Plant Biol, 2014, 14:271.

    [28] 曹红利, 岳川, 周艳华, 等.茶树b ZIP转录因子基因Csb ZIP1的克隆与表达定位[J].作物学报, 2014, 40 (9) :1702-1709.
    [29] 王郁.茶树低温应答相关转录因子Cs ICE1和Cs CBF1的研究[D].合肥:安徽农业大学, 2011.
    [30] 刘声传.茶树对干旱胁迫和复水响应的生理、分子机理[D].杭州:中国农业科学院茶叶研究所, 2015.
    [31] 赵姗姗.MicroRNA对铁观音茶树干旱胁迫响应机制研究[D].福州:福建农林大学, 2015.
    [32]

    Mohanpuria P, Yadav S K.Characterization of novel small RNAs from tea (Camellia sinensis, L.) [J].Molecular Biology Reports, 2012, 39 (4) :3977-3986.

    [33] 陈林波, 夏丽飞, 周萌, 等.基于RNA-Seq技术的“紫娟”茶树转录组分析[J].分子植物育种, 2015, 13 (10) :2250
    [34] 李健.‘紫娟’茶树紫叶花青素积累机理的转录组分析[D].福州:福建农林大学, 2016.
    [35] 李娜娜.新梢白化茶树生理生化特征及白化分子机理研究[D].杭州:浙江大学, 2015.
    [36] 李春芳.茶树类黄酮等次生代谢产物的合成及基因的表达分析[D].杭州:中国农业科学院, 2016.
    [37] 吴全金.‘白鸡冠’茶树响应光调控的基因差异及理化特征分析[D].福州:福建农林大学, 2015.
    [38]

    Wang L, Yue C, Cao H, et al.Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar[J].Bmc Plant Biology, 2014, 14:352.

    [39]

    Shi C, Yang H, Wei C, et al.Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds[J].BMC Genomics, 2011, 12 (1) :131.

    [40]

    Wu H, Chen D, Li J, et al.De novo characterization of leaf transcriptome using 454 sequencing and development of ESTSSR markers in tea (Camellia sinensis) [J].Plant Molecular Biology Reporter, 2013, 31 (3) :524-538.

    [41] 王弘雪.与茶树类黄酮合成相关的MYB转录因子的克隆及表达研究[D].合肥:安徽农业大学, 2012.
    [42] 赵磊.茶树类黄酮合成转录因子筛选及ANR基因功能验证[D].合肥:安徽农业大学, 2013.
    [43]

    Kahn P.From genome to proteome:Looking at a cell’s proteins[J].Science, 1995, 270 (5235) :369-370.

    [44] 尹稳, 伏旭, 李平.蛋白质组学的应用研究进展[J].生物技术通报, 2014 (1) :32-38.
    [45]

    Zhang X, Fang A, Riley C P, et al.Multi-dimensional liquid chromatography in proteomics—A review[J].Analytica Chimica Acta, 2010, 664 (2) :101-113.

    [46] 郭春芳, 孙云, 赖呈纯, 等.聚乙二醇胁迫下茶树叶片的蛋白质组分析[J].茶叶科学, 2009, 29 (2) :79-88.
    [47] 庄重光.不同水分处理下铁观音茶树的生理机制及其差异蛋白质组学研究[D].福州:福建农林大学, 2008.
    [48]

    Chen Q, Yang L, Ahmad P, et al.Proteomic profiling and redox status alteration of recalcitrant tea (Camellia sinensis) seed in response to desiccation[J].Planta, 2011, 233 (3) :583-592.

    [49]

    Zhou L, Xu H, Mischke S, et al.Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress[J].Horticulture Research, 2014, 1:14029.

    [50]

    Hu Yongguang L Y L J.Comparative proteomics analysis of tea leaves exposed to subzero temperature:Molecular mechanism of freeze injury[J].International Journal of Agricultural&Biological Engineering, 2013, 6 (4) :27-34.

    [51] 李勤.安吉白茶新梢生育期间蛋白质组学及茶氨酸体外生物合成的研究[D].长沙:湖南农业大学, 2011.
    [52] 张立明, 王云生, 高丽萍, 等.茶树不同儿茶素含量愈伤组织的蛋白差异分析[J].中国农业科学, 2010 (19) :4053-4062.
    [53]

    Li Q, Li J, Liu S, et al.A comparative proteomic analysis of the buds and the young expanding leaves of the tea plant (Camellia sinensis L.) [J].International Journal of Molecular Sciences, 2015, 16 (6) :14007-14038.

    [54] 林金科.茶树高EGCG的种质资源及外源诱导研究[D].福州:福建农林大学, 2003.
    [55] 刘仲华.黑茶化学物质组学与降脂减肥作用机理研究[D].北京:清华大学, 2014.
    [56] 吴朝比.黑茶降血脂功效评价及其对模型大鼠蛋白质差异表达的影响[D].长沙:湖南农业大学, 2012.
    [57] 宋爽, 严亮, 王宣军, 等.双向电泳分析普洱茶对小鼠肝脏MUP-1蛋白表达的影响[J].西南农业学报, 2014, 27 (1) :428-432.
    [58]

    Lu Q Y, Yang Y A, Jin Y S, et al.Effects of green tea extract on lung cancer A549 cells:proteomic identification of proteins associated with cell migration[J].Proteomics, 2009, 9 (3) :757-767.

    [59]

    Sumner L W, Mendes P, Dixon R A.Plant metabolomics:large-scale phytochemistry in the functional genomics era[J].Phytochemistry, 2003, 62 (6) :817-836.

    [60]

    Fiehn O.Metabolomics-the link between genotypes and phenotypes[J].Plant Molecular Biology, 2002, 48 (1) :155-171.

    [61]

    Jiang X, Liu Y, Li W, et al.Tissue-specific, developmentdependent phenolic compounds accumulation profile and gene expression pattern in tea plant (Camellia sinensis) [J].Plos One, 2013, 8 (4) :e62315-e62315.

    [62] 杨亦扬, 马立锋, 黎星辉, 等.氮素水平对茶树新梢叶片代谢谱及其昼夜变化的影响[J].茶叶科学, 2013, 33 (6) :491-499.
    [63] 王凯.基于稳定性同位素~ (15) N示踪和代谢谱分析技术的茶叶氮代谢研究[D].合肥:安徽农业大学, 2012.
    [64] 郝亚利.基于代谢谱分析的不同光质处理对茶鲜叶品质形成的影响研究[D].合肥:安徽农业大学, 2010.
    [65]

    Lee L, Choi J H, Son N, et al.Metabolomic analysis of the effect of shade treatment on the nutritional and sensory qualities of green tea[J].Journal of Agricultural and Food Chemistry, 2013, 61 (2) :332-338.

    [66]

    Lee J, Lee B, Hwang J, et al.Metabolic dependence of green tea on plucking positions revisited:A metabolomic study[J].Journal of Agricultural and Food Chemistry, 2011, 59 (19) :10579-10585.

    [67] 宁井铭, 方骏婷, 朱小元, 等.基于代谢谱分析的祁门红茶加工过程中儿茶素及芳香类物质变化[J].食品工业科技, 2016 (9) :127-133, 138.
    [68] 王秀梅.祁门红茶加工过程中代谢谱分析及其品质形成机理研究[D].合肥:安徽农业大学, 2012.
    [69] 吕海鹏, 林智, 张悦, 等.不同等级普洱茶的化学成分及抗氧化活性比较[J].茶叶科学, 2013 (4) :386-395.
    [70]

    Tarachiwin L, Ute K, Kobayashi A, et al.1H NMR based metabolic profiling in the evaluation of japanese green tea quality[J].Journal of Agricultural and Food Chemistry, 2007, 55 (23) :9330-9336.

    [71]

    Pongsuwan W, Bamba T, Harada K, et al.High-throughput technique for comprehensive analysis of japanese green tea quality assessment using ultra-performance liquid chromatography with time-of-flight mass spectrometry (UPLC/TOF MS) [J].Journal of Agricultural and Food Chemistry, 2008, 56 (22) :10705-10708.

    [72] 刘晓莎, 董继扬, 孟维君, 等.铁观音茶水浸出物组成模式及溶出规律的核磁共振波谱分析[J].茶叶学报, 2015 (4) :198-205.
    [73]

    Lee J, Lee B, Chung J, et al.1H NMR-based metabolomic characterization during green tea (Camellia sinensis) fermentation[J].Food Research International, 2011, 44 (2) :597-604.

    [74] 陈红霞.普洱茶发酵过程的代谢组学研究[D].北京:北京化工大学, 2013.
    [75] 叶茂.应用代谢组学策略研究普洱茶及其对人体代谢的影响[D].上海:上海交通大学, 2008.
    [76]

    Ku K M, Kim J, Park H, et al.Application of metabolomics in the analysis of manufacturing type of pu-erh tea and composition changes with different postfermentation year[J].Journal of Agricultural and Food Chemistry, 2010, 58 (1) :345-352.

    [77]

    Lee J, Lee B, Chung J, et al.Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography[J].Food Chemistry, 2015, 174:452-459.

    [78]

    Fraser K, Lane G A, Otter D E, et al.Analysis of metabolic markers of tea origin by UHPLC and high resolution mass spectrometry[J].Food Research International, 2013, 53 (2) :827-835.

    [79] 李万春.气质联用在不同茶叶品质鉴定中的应用[D].南京:南京理工大学, 2012.
    [80]

    Le Gall G, Colquhoun I J, Defernez M.Metabolite profiling using1H NMR spectroscopy for quality assessment of green tea, Camellia sinensis (L.) [J].Journal of Agricultural and Food Chemistry, 2004, 52 (4) :692-700.

    [81] 郑起帆, 佘玉奇, 肖雪蓉, 等.基于1H-NMR的2个产地普洱生茶差异代谢物的研究[J].广东药学院学报, 2016 (2) :187-191.
    [82]

    Zhang L, Deng W, Wan X.Advantage of LC-MS metabolomics to identify marker compounds in two types of Chinese dark tea after different post-fermentation processes[J].Food Science and Biotechnology, 2014, 23 (2) :355-360.

  • 期刊类型引用(3)

    1. 胡智恺,索一平,李爽,王雨婷,刘薇,史锦硕,杨霞,姜洁. 婴儿配方奶粉中克罗诺杆菌的快速检测. 中国酿造. 2023(08): 253-259 . 百度学术
    2. 丁伯乐,蔡为荣,闻志莹,岳丹伟,朱樱,李晶晶. 山药低聚糖制备分离及对五种益生菌的增殖作用. 食品与发酵工业. 2020(24): 74-79 . 百度学术
    3. 李婧,张柏林. 低聚葡萄糖对益生菌的增殖影响. 宁夏农林科技. 2019(12): 72-74+84 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  193
  • HTML全文浏览量:  22
  • PDF下载量:  861
  • 被引次数: 6
出版历程
  • 收稿日期:  2017-02-12

目录

    /

    返回文章
    返回
    x 关闭 永久关闭