• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

芽孢杆菌表达系统的特点及研究进展

苗苗, 黄昆仑, 梁志宏

苗苗, 黄昆仑, 梁志宏. 芽孢杆菌表达系统的特点及研究进展[J]. 食品工业科技, 2017, (18): 312-316. DOI: 10.13386/j.issn1002-0306.2017.18.059
引用本文: 苗苗, 黄昆仑, 梁志宏. 芽孢杆菌表达系统的特点及研究进展[J]. 食品工业科技, 2017, (18): 312-316. DOI: 10.13386/j.issn1002-0306.2017.18.059
MIAO Miao, HUANG Kun-lun, LIANG Zhi-hong. The characters and advances of Bacillus expression system[J]. Science and Technology of Food Industry, 2017, (18): 312-316. DOI: 10.13386/j.issn1002-0306.2017.18.059
Citation: MIAO Miao, HUANG Kun-lun, LIANG Zhi-hong. The characters and advances of Bacillus expression system[J]. Science and Technology of Food Industry, 2017, (18): 312-316. DOI: 10.13386/j.issn1002-0306.2017.18.059

芽孢杆菌表达系统的特点及研究进展

基金项目: 

国家自然科学基金(31671947);

详细信息
    作者简介:

    苗苗 (1995-) , 女, 硕士研究生, 研究方向:食品工程, E-mail:17801136541@163.com。;

    梁志宏 (1969-) , 女, 博士, 副教授, 研究方向:微生物与食品安全, E-mail:lzh105@cau.edu.cn。;

  • 中图分类号: Q78

The characters and advances of Bacillus expression system

  • 摘要: 芽孢杆菌表达系统作为基因工程表达系统,因具有外源蛋白易分离纯化、表达的外源蛋白不会形成包涵体、无致病性等多种优势而被广泛的研究和应用,很多种工业酶都在芽孢杆菌表达系统中获得成功表达。本文主要介绍了芽孢杆菌表达系统的研究进展,特点以及其在工业上的应用。对芽孢杆菌表达体系存在的缺陷提出了解决方法,并说明了芽孢杆菌今后发展的主要方向,为芽孢杆菌表达体系的研究提供参考。 
    Abstract: Bacillus expression system as gene engineering expression system has many advantages such as excellent secretion ability, successful heterologous protein expression system, not forming inclusion bodies, non-endotoxin, so it is widely studied and applied, many kinds of industrial enzymes were expressed in Bacillus subtilis expression system. In this review, it mainly talks about the advances, characters and application of Bacillus expression system, and presents a solution to the defects in the expression system of Bacillus, offering the main research directions for Bacillus expression system.
  • [1] 闫子祥, 杨然李秀婷.微生物表达系统研究进展[J].中国食品学报, 2013, 37 (15) :126-135.
    [2] 叶小兰, 杨倩.枯草芽孢杆菌在防御动物疾病中的研究进展[J].中国兽医科学, 2011, 41 (9) :958-988.
    [3] 杨明明.枯草芽孢杆菌关键遗传调控元件及表达系统的研究[D].咸阳:西北农林科技大学, 2013:1-17.
    [4] 郭菁, 田宝玉, 蔡婉玲, 等.侧孢短芽孢杆菌蛋白酶基因BLG4在枯草芽孢杆菌WB600中的高效表达[J].福建农林大学学报:自然科学版, 2011, 40 (2) :165-171.
    [5]

    Ameny Farhat-Khemakhem, Mounira Ben Farhat, Ines Boukhris, et al.Heterologous expression and optimization using experimental designs allowed highly efficient production of the PHY US417 phytase in Bacillus subtilis 168[J].AMB Express, 2012, 2:2-11.

    [6]

    Gryzczan T J.Molecular cloning in Bacillus subtilis[J].The Molecular Biology of the Bacilli, 1982:21-28.

    [7] 梁晓梅, 黎明, 成堏, 等.大肠杆菌-枯草芽孢杆菌穿梭质粒的构建及碱性蛋白酶的的表达[J].生物技术通报, 2011, 4 (6) :165-169.
    [8] 夏雨.枯草芽孢杆菌食品级表达系统的构建和分泌表达研究[D].无锡:江南大学, 2007:1-10.
    [9] 屈伸, 刘志.分子生物学实验技术[M].北京:化学工业出版社, 2008:201-204.
    [10] 徐子勤.功能基因组学[M].北京:科学出版社, 2007:213-215.
    [11] 刘伟, 林志伟, 陈美霞, 等.枯草芽孢杆菌绿色荧光蛋白高效表达载体的构建[J].热带作物学报, 2012, 33 (3) :467-471.
    [12] 尚田田.枯草芽孢杆菌表达体系高效表达抗菌肽PNK-19方法的建立[D].新乡:河南科技学院, 2014:8-10.
    [13]

    Kaltwasser M, Wiegert T, Schumann W.Construction and application of epitope-and green fluorescent protein-tagging integration vect ors for Bacillus subtilis[J].Applied and Environmental Microbiology, 2002, 68 (5) :2624-2628.

    [14]

    Feucht A, Lewis PJ.Improved plasmid vectors for the production of multiple fluorescent protein fu sions in Bacillus subtilis[J].Gene, 2001, 264 (2) :289-297.

    [15]

    Guérout-Fleury AM, Frandsen N, Stragier P.Plasmids for ectopic integration in Bacillus subtilis[J].Gene, 1996, 180 (1) :57-61.

    [16]

    Nagarajan V, Albertson H, Chen M, et al.Modular expression and secretion vectors for Bacillus subtili[J].Gene, 1992, 114 (1) :121-126.

    [17]

    Wu SC, Wong SL.Development of improved p UB110-based vect ors for expression and secretion studies in Bacillus subtilis[J].Journal of Biotechnology, 1999, 72 (3) :185-195.

    [18]

    Wang LF, Wong SL, Lee SG, et al.Expres sion and secretion of human atrial natriureticα-factor in Bacillus subtilis using the subtilisin signal peptide[J].Gene, 1988, 69 (1) :39-47.

    [19] 董晨, 曹娟, 张迹.耐高温α-淀粉酶基因在枯草芽孢杆菌中的高效表达[J].应用与环境生物学报, 2008, 14 (4) :534-538.
    [20]

    Long Liu, Yanfeng Liu, Hyun-dong Shin, et al.Developing Bacillus spp.as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology[J].Appl Microbiol Biotechnol, 2013, 97:6113-6127.

    [21]

    Michel S, Dominique L C.The DNA sequence of the gene for the secreted Bacillus subtilis enzyme levansucrase and its genetic control sites[J].Molecular and General Genetics, 1985, 200:220-228.

    [22] 周勇, 徐刚, 杨立荣, 等.信号肽优化在枯草芽孢杆菌体系中对脂肪酶分泌表达的影响[J].中国生物工程杂志, 2015, 35 (9) :42-49.
    [23]

    Tjalsma H, Bolhuis A, Jongbloed JDH, et al.Signal peptidedependent protein transport in Bacillus subtilis:agenome-based survey of the secretome[J].Microbiology and Molecular Biology Reviews, 2000, 64:515-547.

    [24] 李静静.高产α-乙酰乳酸脱羧酶重组枯草芽孢杆菌的构建及其发酵优化[D].无锡:江南大学, 2013:25-44.
    [25] 丁伟, 张明俐, 史吉平, 等.表达谷氨酸脱羧酶重组枯草芽孢杆菌的构建及其发酵条件的优化[J].生物工程, 2015, 36 (23) :194-198.
    [26] 郭苏.芽胞杆菌属来源的普鲁兰酶基因的克隆表达及枯草芽孢杆菌表达体系的构建[D].上海:华东理工, 2012:35-48.
    [27]

    Keith WY Kwong, K L Ng, C C Lam Yule Y Wang, et al.Authentic human basic fibroblast growth factor produced by secretion in Bacillus subtilis[J].Appl Microbiol Biotechnol, 2013, 97:6803-6811.

    [28] 贾敏, 万孟, 张涛, 等.D-阿洛酮糖3-差向异构酶基因在枯草芽孢杆菌中的表达[J].食品与生物技术学报, 2014, 33 (11) :1129-1135.
    [29] 郭德军, 李岩松, 王欣, 等.巨大芽孢杆菌表达系统的特点及其研究进展[J].生物技术, 2010, 20 (6) :92-95.
    [30] 牟琳, 王红宁, 邹立扣.巨大芽孢杆菌表达外源蛋白的特点及其研究进展[J].中国生物工程杂志, 2008, 28 (4) :93-97.
    [31] 金辉, 廖思明, 王青艳.碱性α-淀粉酶基因在巨大芽孢杆菌中的表达及酶学性质研究[J].生物技术通报, 2011 (11) :154-158.
    [32] 周海燕, 饶力群, 吴永尧.甘露聚糖酶man23基因的重组及其在短短芽孢杆菌中的表达[J].浙江大学学报, 2008, 34 (4) :389-394.
    [33] 张杰, 宋福平, 左雅慧, 等.31株苏云金芽孢杆菌杀虫晶体蛋白基因型鉴定及表达产物研究[J].微生物学报, 2000, 40 (7) :372-377.
    [34] 陈启民, 耿运琪, 倪津.短小芽抱杆菌作为芽抱杆菌属基因工程受体菌的研究[J].遗传学报, 1989, 16 (3) :206-212.
    [35] 包怡红, 刘伟丰, 董志扬.耐碱性木聚糖酶在短小芽孢杆菌中高效分泌表达的研究[J].中国食品学报, 2008, 8 (5) :37-43.
    [36]

    Commichau FM, Alzinger A, Sande R, et al.Overexpression of a non-native deoxyxylulose-dependent vitamin B6 pathway in Bacillus subtilis for the production of pyridoxine[J].Metab Eng, 2014, 25:38-49.

    [37]

    Zafar M, Ahmed S, Khan MI, et al.Recombinant expression and characterization of a novel endoglucanase from Bacillus subtilis in Escherichia coli[J].Molecular Biology Reports, 2014, 41:3295-302.

    [38]

    Ju Jung, Kyung Ok Yu, Ahmad Bazli Ramzi, et al.Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, com X and phr C[J].Biotechnol Bioeng, 2012, 109:2349-2356.

    [39] 王金斌, 陈大超, 李文, 等.食品级枯草芽孢杆菌表达系统的最新研究进展[J].上海农业学报, 2014, 30 (1) :115-120.
    [40]

    Phan TTP, Nguyen HD, Schumann W.Development of a strong intracellular expression system for Bacillus subtilis by optimizing promoter elements[J].Biotechnol, 2012, 157:167-172.

    [41]

    Zhang Xiao Zhou, Yan Xin, Cui Zhong Li, et al.Recombinant expression and secretion of mpd gene using the promoters of ytk A and ywo F gene from Bacillus subtilis[J].Chinese Journal of Biotechnology, 2006, 22 (2) :249-256.

    [42]

    Shanshan Li, Xiaoqiang Jia, Jianping Wen.Improved2-methyl-1-propanol production in an engineered Bacillus subtilis by constructing inducible pathways[J].Biotechnol Lett, 2012, 34:2253-2258.

    [43]

    J Olmos-Soto, R Contreras-Flores.Genetic system constructed toover produce and secrete proinsulin in Bacillus subtilis[J].Appl Microbiol Biotech, 2003, 62:369-373.

    [44]

    Mauriello, Ducb, Rachele Isticatoa, et al.Display of heterologous antigens on the Bacillus subtilis spore coat using Cot C as a fusion partner[J].Vaccine, 2004, 22:1177-1187.

    [45]

    Chengran Guan, Wenjing Cui, Jintao Cheng, et al.Development of an efficient autoinducible expression system by promoter engineering in Bacillus subtilis[J].Microbial Cell Factories, 2016, 15 (66) :2-12.

    [46]

    Reza Panahi, Ebrahim Vasheghani-Farahani, Seyed Abbas Shojaosadati, et al.Induction of Bacillus subtilis expression system using environmental stresses and glucose starvation[J].Ann Microbiol, 2014, 64:879-882.

    [47] 毕台飞, 胡雄斌, 宋巍, 等.枯草芽孢杆菌高效表达系统的构建[J].西北农林科技大学学报, 2011, 39 (11) :71-79.
    [48]

    Prax M, Lee CY, Bertram R.An update on the molecular genetics toolbox for staphylococci[J].Microbiol, 2013, 159:421-435.

    [49]

    Sen-Lin Liu, Kun Du.Enhanced expression of an endoglucanase in Bacillus subtilis by using the sucrose-inducible sac B promoter and improved properties of the recombinant enzyme[J].Protein Expression and Purification, 2012, 83:164-168.

    [50]

    Westers H, Dorenbos R, Dijl J M.Genome engineering reveals large dispensable regions in Bacillus subtilis[J].Mol Biol Evol, 2003, 20 (12) :2076-2090.

    [51]

    Cui W, Han L, Cheng J, et al.Engineering an inducible gene expression system for Bacillus subtilis from a strong constitutive promoter and a theophylline-activated synthetic riboswitch[J].Microbial Cell Factories, 2016, 15 (1) :199.

    [52]

    Bambai RPEV-FSASB.Auto-inducible expression system based on the Sig B-dependent ohr B promoter in Bacillus subtilis[J].Ann Microbiol, 2014 (64) :879-82.

    [53]

    Phan TT, Tran LT, Schumann W, et al.Development of Pgrac100-based expression vectors allowing high protein production levels in Bacillus subtilis and relatively low basal expression in Escherichia coli[J].Microbial Cell Factories, 2015:14-72.

    [54]

    Toshitaka Minetoki HT, Akio Koda, Kenji Ozeki, et al.Development of high expression system with the improved promoter using the cis-acting element in Aspergillus species[J].J Biol Macromol, 2003, 3 (3) :89-96.

    [55]

    Hernandez-Garcia CM, Finer JJ.A novel cis-acting element in the Gm ERF3 promoter contributes to inducible gene expression in soybean and tobacco after wounding[J].Plant Cell Reports, 2016, 35 (2) :303-316.

    [56]

    Guan C, Cui W, Cheng J, et al.Development of an efficient autoinducible expression system by promoter engineering in Bacillus subtilis[J].Microbial Cell Factories, 2016, 15:60-66.

    [57]

    Liu B, Zhang J, Li B, et al.Expression and characterization of extreme alkaline, oxidation-resistant keratinase from Bacillus licheniformis in recombinant Bacillus subtilis WB600 expression system and its application in wool fiber processing[J].World Journal of Microbiology&Biotechnology, 2013, 29 (5) :825-832.

    [58]

    Cheng J, Guan C, Cui W, et al.Enhancement of a high efficient autoinducible expression system in Bacillus subtilis by promoter engineering[J].Protein Expression and Purification, 2016, 127:81-87.

    [59]

    Bongers RS, Veening JW, Van Wieringen M, et al.Development and characterization of a subtilin-regulated expression system in Bacillus subtilis:strict control of gene expression by addition of subtilin[J].Applied and Environmental Microbiology, 2005, 71 (12) :8813-8826.

    [60]

    Guan C, Cui W, Cheng J, et al.Construction and development of an auto-regulatory gene expression system in Bacillus subtilis[J].Microbial Cell Factories, 2015, 14:8818-8824.

    [61]

    Tobias Küppers1 VS, Hendrik Hellmuth1, Timothy O’Connell1, et al.Developing a new production host from a blueprint:Bacillus pumilus as an industrial enzyme producer[J].Microbial Cell Factories, 2014;44 (13) :2-15.

    [62]

    Chen J, Zhu Y, Fu G, et al.High-level intra-and extracellular production of D-psicose 3-epimerase via a modified xylose-inducible expression system in Bacillus subtilis[J].Journal of Industrial Microbiology&Biotechnology, 2016, 43 (11) :1577-1591.

    [63]

    Guan C, Cui W, Cheng J, et al.Construction and development of an auto-regulatory gene expression system in Bacillus subtilis[J].Microbial Cell Factories, 2015, 14:150.

    [64]

    Tobias Küppers, Victoria Steffen, Hendrik Hellmuth.Developing a new production host from a blueprint:Bacillus pumilus as an industrial enzyme producer[J].Microbial Cell Factories, 2014, 44 (13) .

    [65]

    Chen J, Jin Z, Gai Y, et al.A food-grade expression system for d-psicose 3-epimerase production in Bacillus subtilis using an alanine racemase-encoding selection marker[J].Bioresources and Bioprocessing, 2017, 4 (1) :9.

    [66]

    Thomas Rygus WH.Inducible high-level expression of heterologous genes in Bacillus megaterium using the regulatory elements of the xylose-utilization operon[J].Appl Microbiol Biotechnol, 1991 (35) :594-599.

    [67]

    T Rygus AS, R Allmansberger, W Hillen.Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization[J].Arch Microbiol, 1991 (155) :535-542.

    [68]

    Peng DH, Pang CY, Wu H.The expression and crystallization of Cry65Aa require two C-termini, revealing a novel evolutionary strategy of Bacillus thuringiensis Cry proteins[J].Scientific Reports, 2015, 5:8291.

  • 期刊类型引用(3)

    1. 胡智恺,索一平,李爽,王雨婷,刘薇,史锦硕,杨霞,姜洁. 婴儿配方奶粉中克罗诺杆菌的快速检测. 中国酿造. 2023(08): 253-259 . 百度学术
    2. 丁伯乐,蔡为荣,闻志莹,岳丹伟,朱樱,李晶晶. 山药低聚糖制备分离及对五种益生菌的增殖作用. 食品与发酵工业. 2020(24): 74-79 . 百度学术
    3. 李婧,张柏林. 低聚葡萄糖对益生菌的增殖影响. 宁夏农林科技. 2019(12): 72-74+84 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  496
  • HTML全文浏览量:  77
  • PDF下载量:  767
  • 被引次数: 6
出版历程
  • 收稿日期:  2017-02-12

目录

    /

    返回文章
    返回
    x 关闭 永久关闭