Hot-air drying kinetics of lily
-
摘要: 为了探讨热风温度对百合热风干制动力学的影响,分别将百合鳞片和百合切丝置于65~85℃的热风干燥箱内进行干制处理,并采用5种常见食品薄层干燥模型对实验数据进行非线性拟合,通过比较评价决定系数(R2)、卡方(χ2)和均方根误差(RMSE)等统计数据确定百合薄层热风干燥过程的最优模型。结果表明:百合薄层热风干燥是内部水分扩散控制的降速干燥过程。Page模型是描述百合薄层热风干燥过程的最优模型。不同干燥条件下有效水分扩散系数Deff和活化能Ea的求解结果表明,有效水分扩散系数Deff随热风温度升高而增加,在干制温度范围内,百合切丝有效扩散系数的值在7.73~14.12×10-9m2/s之间变化,而百合鳞片有效扩散系数的值在4.12~9.49×10-9m2/s之间变化。对于百合切丝和百合鳞片,活化能Ea分别为30.37和42.42 k J/mol。百合切丝干制能缩短干制时间,减少能量消耗。Abstract: In this study, lily was dried as thin-layers in the ranges of 65 85 ℃ of drying temperature in a hot-air dryer.The effect of drying hot-air temperature on the drying kinetics was analyzed.Five different dynamic models were fitted nonlinearly by using the drying test data of lily and the best suitable model was selected by comparing the values of the correlation coefficient ( R2) , the reduced chi-square ( χ2) and the root mean square error ( RMSE) .The results showed that drying process of lily scales and sliced lily occurred in the falling rate period, and the moisture transfer was controlled by internal diffusion.The Page model was the best suitable to descript the relationship of lily moisture and drying time by hot-air drying.The effective moisture diffusion coefficient (Deff) and the activation energy ( Ea) were also obtained by experiments under different conditions, the values of Deffwould increase with the addition of drying temperature, Deffvalues changed from 7.73 to 14.12 × 10-9m2/s for shred lily, while Deffvalues changed from 4.12 to 9.49 × 10-9m2/s for lily scales within the given temperature range. An Arrhenius relation with Eavalues of 42.42 and 30.37 k J/mol for lily scales and shredded lily expressed the effect of shred on the diffusivity.Shredded lily could short drying time and reduce energy consumption.
-
[1] 李玉帆, 明军, 王良桂, 等.百合基本营养成分和活性物质研究进展[J].中国蔬菜, 2012 (24) :7-13. [2] 杨云光, 邓成忠.食用百合品种介绍[J].中国果菜, 2002 (5) :32. [3] 李玉萍, 龚妍春.百合属植物资源的分布利用价值及其开发前景展望[J].安徽农业科学, 2010, 38 (7) :3395-3399. [4] 卢美娇.药用百合与食用百合的区别[J].时针国医国药, 2001, 18 (9) :806. [5] 华平, 郑艺梅, 刘海波.不同干燥方法对百合品质的影响[J].安徽农业科学, 2004, 32 (2) :312-313. [6] 马兰特, 翟香葳.百合热风干燥过程的无硫防褐变研究[J].甘肃科技, 2015, 31 (12) :132-135. [7] 关志强, 王秀芝, 李敏, 等.荔枝果肉热风干燥薄层模型[J].农业机械学报, 2012, 43 (2) :152-158. [8] Doymaz 6) I.Drying behavior of green beans[J].Journal of Food Engineering, 2005, 69:161-165
[9] Sacilik K, Elicin AK.The thin layer drying characteristics of organic apple slices[J].Journal of Food Engineering, 2008 (73) :281-289.
[10] Doymaz 6) I, 6) Ismail O.Experimental characterization and modelling of drying of pear slices[J].Food Science and Biotechnology, 2012, 21:1377-1381.
[11] Lee JH, Kim HJ.Vacuum drying kinetics of Asian white radish (Raphanus sativus L.) slices[J].LWT-Food Science and Technology, 2009, 42:180-186.
[12] Menges HO, Can Ertekin C.Mathematical modeling of thin layer drying of Golden apples[J].Journal of Food Engineering, 2006, 77:119-125.
[13] Janjai S, Precoppe M, Lamlert N, et al.Thin-layer drying of litchi (Litchi chinensis Sonn.) [J].Food Bioproduct and Processing, 2011, 89:194-201.
[14] Lee JH, Zuo L.Mathematical modeling on vacuum drying of Zizyphus jujube Miller slices[J].Journal of Food Science and Technology, 2013, 50:115-121.
[15] Ertekin C, Yaldiz O.Drying of eggplant and selection of a suitable thin layer drying model[J].Journal of Food Engineering, 2004, 63 (3) :349-359.
[16] Wang ZF, Sun J, Liao XJ, et al.Mathematical modeling on hot air drying of thin layer apple pomace[J].Food Research International, 2007, 40:39-46.
[17] Doymaz I.The kinetics of forced convective air-drying of pumpkin slices[J].Journal of Food Engineering, 2007, 79:243-248.
[18] 师建芳, 吴辉煌, 娄正, 等.豇豆隧道式热风干燥特性和模型[J].农业工程学报, 2013, 29 (11) :232-240. [19] Demiray E, Tulek Y.Drying characteristics of garlic (Allium sativum L) slices in a convective hot air dryer[J].Heat and Mass Transfer, 2014 (50) :779-786.
[20] Doymaz 6) I.Thin-layer drying characteristics of sweet potato slices and mathematical modeling[J].Heat Mass Transfer, 2011, 47:277-285.
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: