• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

山药多糖和燕麦多糖发酵产酸及发酵产物对结肠癌细胞的增殖抑制作用

殷丹婷, 郝丽鑫, 王琦, 赵新淮

殷丹婷, 郝丽鑫, 王琦, 赵新淮. 山药多糖和燕麦多糖发酵产酸及发酵产物对结肠癌细胞的增殖抑制作用[J]. 食品工业科技, 2017, (15): 296-301. DOI: 10.13386/j.issn1002-0306.2017.15.055
引用本文: 殷丹婷, 郝丽鑫, 王琦, 赵新淮. 山药多糖和燕麦多糖发酵产酸及发酵产物对结肠癌细胞的增殖抑制作用[J]. 食品工业科技, 2017, (15): 296-301. DOI: 10.13386/j.issn1002-0306.2017.15.055
YIN Dan-ting, HAO Li-xin, WANG Qi, ZHAO Xin-huai. Acid production of the polysaccharides from yam and oat in vitro fermentation as well as the growth inhibition of the fermentation products on human colon cancer cells[J]. Science and Technology of Food Industry, 2017, (15): 296-301. DOI: 10.13386/j.issn1002-0306.2017.15.055
Citation: YIN Dan-ting, HAO Li-xin, WANG Qi, ZHAO Xin-huai. Acid production of the polysaccharides from yam and oat in vitro fermentation as well as the growth inhibition of the fermentation products on human colon cancer cells[J]. Science and Technology of Food Industry, 2017, (15): 296-301. DOI: 10.13386/j.issn1002-0306.2017.15.055

山药多糖和燕麦多糖发酵产酸及发酵产物对结肠癌细胞的增殖抑制作用

基金项目: 

高等学校博士学科点专项科研基金(20092325110012);

详细信息
    作者简介:

    殷丹婷 (1993-) , 女, 在读硕士研究生, 研究方向:食品科学, E-mail:yindanting@163.com。;

    赵新淮 (1963-) , 男, 博士, 教授, 主要从事食品化学研究, E-mail:zhaoxh@neau.edu.cn。;

  • 中图分类号: TS201.4

Acid production of the polysaccharides from yam and oat in vitro fermentation as well as the growth inhibition of the fermentation products on human colon cancer cells

  • 摘要: 采用水提取、醇沉淀法制备山药多糖和燕麦多糖,利用健康成人粪便提取物中的肠道微生物体外发酵多糖,确定发酵产酸情况(乙酸,丙酸,丁酸,乳酸)以及发酵产物对结肠癌细胞HCT-116的增殖抑制作用。山药多糖和燕麦多糖的糖含量分别为82.63%和80.32%。发酵24 h,山药多糖和燕麦多糖产生23.28、25.14 mmol/L乙酸、2.49、1.97 mmol/L丙酸、11.04、7.99 mmol/L丁酸和0.19、0.46 mmol/L乳酸;发酵48 h,它们产生四种酸为28.14、42.53,6.48、2.45,13.76、9.64,0.08、0.09 mmol/L。发酵时间从24 h延长至48 h,产物中乙酸、丙酸和丁酸含量显著提高(p<0.05),而乳酸含量明显降低(p<0.05)。两种多糖对细胞的抑制作用小于24.5%,而两种多糖发酵产物有更强的抑制作用,分别达到46.2%69.1%、44.6%67.3%;48 h发酵产物抑制作用更强,处理细胞48 h产生的抑制作用更大。结果表明,两种多糖经过肠道微生物发酵后,其产物对结肠癌细胞具有更强的增殖抑制活性。 
    Abstract: Yam polysaccharides and oat polysaccharides were both prepared using water extraction and alcohol precipitation methods.The intestinal microflora in a fecal extract from the health adults were used to ferment the two polysaccharides in vitro.The amount of four organic acids ( acetic, propionic, butyric and lactic acids) in the generated fermentation products were measured, and growth inhibition of these fermentation products on human colon cancer cells ( HCT-116 cells) were assessed.Yam polysaccharides and oat polysaccharides contained saccharide contents of 82.63% and 80.32%, respectively. Being fermented for 24 h, yam polysaccharides and oat polysaccharides generated acetic, propionic, butyric and lactic acids in levels of 23.28 and 25.14, 2.49 and 1.97, 11.04 and 7.99, 0.19 and 0.46 mmol/L, respectively. Being fermented for 48 h, yam polysaccharides and oat polysaccharides resulted in the levels of the four acids at 28.14 and 42.53, 6.48 and 2.45, 13.76 and9.64, 0.08 and 0.09 mmol/L, respectively. With the increase of fermentation time ( 24 ~ 28 h) , acetate, propionate and butyrate contents in fermentation products were enhanced clearly ( p < 0.05) , but lactate contents was also decreased markedly ( p <0.05) .Yam polysaccharides and oat polysaccharides showed lower growth inhibition ( less than 24.5%) on the HCT-116 cells.However, the obtained fermentation products exerted growth inhibition effect ( 46.2% 69.1% and 44.6% 67.3%, respectively) on the cells.And more, a fermentation time of 48 h conferred the fermentation products with higher growth inhibition while treatment of the cells for 48 h also led to higher growth inhibition.It is thus concluded that in vitro fermentation of the two polysaccharides by the intestinal microflora could bring enhanced anti-proliferation activities to the colon cancer cells.
  • [1]

    Sun W J, Meng K, Qi C H, et al.Immune-enhancing activity of polysaccharides isolated from Atractylodis macrocephalae Koidz[J].Carbohydrate Polymers, 2015, 126:91-96.

    [2]

    Liu J, Willfo S, Xu C L.A review of bioactive plant polysaccharides:Biological activities, functionalization, and biomedical applications[J].Bioactive Carbohydrates and Dietary Fibre, 2015, 5:31-61.

    [3]

    Cooke C L, An H J, Kim J, et al.Method for profiling mucin oligosaccharides from gastric biopsies of rhesus mon keys with and without Helicobacter pylori infection[J].Analytical Chemistry, 2007, 79 (21) :8090-8097.

    [4]

    Dube D H, Bertozzi C R.Glycans in cancer and inflammation-Potential for therapeutics and diagnostics[J].Nature Reviews Drug Discovery, 2005, 4 (6) :477-488.

    [5]

    Varki A.Biolog ical roles of oligosaccharides:All of the theories are correct[J].Glycobiology, 1993, 3 (2) :97-130.

    [6]

    Takahashi Y, Kitadai Y, Bucana C D, et al.Expression of VEGF and its receptor KDR.Correlates with vascularity metastasis and proliferation of human colon cancer[J].Cancer Research, 1995, 55 (12) :3964-3968.

    [7]

    Wu Q Y, Qu H S, Jia J Q, et al.Characterization, antioxidant and antitumor activities of polysaccharides from purple sweet potato[J].Carbohydrate Polymers, 2015, 132:31-40.

    [8] 何凤玲, 叶小利, 李学刚, 等.山药中降糖活性成分的筛选与比较[J].食品工业科技, 2011, 32 (6) :373-375.
    [9] 宋莎莎, 吕佳煜, 冯叙桥.大蒜多糖研究进展[J].食品工业科技, 2017, 38 (1) :364-374.
    [10]

    Pujol C A, Ray S, Ray B, et al.Antiviral activity against dengue virus of diverse classes of algal sulfated polysaccharides[J].International Journal of Biological Macromolecules, 2012, 51:412-416.

    [11] 刘帅, 杨小兰, 张晓云.长山药粗多糖对果蝇抗衰老作用的研究[J].食品工业科技, 2013, 34 (14) :339-341.
    [12] 刘杭达, 马千苏, 王傑, 等.紫山药粗多糖提取工艺的优化及其抗氧化性的研究[J].食品工业科技, 2015, 36 (23) :208-212.
    [13]

    Yang W F, Wang Y, Li X P, et al.Purification and structural characterization of Chinese yam polysaccharide and its activities[J].Carbohydrate Polymers, 2015, 117:1021-1027.

    [14]

    Virkkia L, Johanssona L, Ylinena M, et al.Structural characterization of water-insoluble nonstarchy polysaccharides of oats and barley[J].Carbohydrate Polymers, 2005:357-366.

    [15]

    Yang W F, Wang Y, Li X P, et al.Purification and structural characterization of Chinese yam polysaccharide and its activities[J].Carbohydrate Polymers, 2015, 117:1021-1027.

    [16]

    Cummings J H, Pomare E W, Branch W J, et al.Short chain fatty acids in human large intestine, portal, hepatic and venous blood[J].Gut, 1987, 28 (10) :1221-1227.

    [17]

    Bergman E N.Energy contributions of volatile fatty acids from the gastrointestinal tract in various species[J].Physiological Reviews, 1990, 70 (2) :567-590.

    [18]

    Venter C S, Vorster H H, Cummings J H.Effects of dietary propionate on carbohydrate and lipid metabolism in healthy volunteers[J].The American Journal of Gastroenterology, 1990, 85 (5) :549-553.

    [19]

    Perrin P, Pierre F, Patry Y, et al.Only fibres promoting a stable butyrate producing colonic ecosystem decrease the rate of aberrant crypt foci in rats[J].Gut, 2001, 48 (1) :53-61.

    [20]

    Rasmussen H, Dirven H, Grant D, et al.Etiology of cecal and hepatic lesions in mice after administration of gas-carrier contrast agents used in ultrasound imaging[J].Toxicology and Applied Pharmacology, 2003, 188 (3) :176-184.

    [21]

    Piekarska J, Mis'ta D, Houszka M, et al.Trichinella spiralis:The influence of short chain fatty acids on the proliferation of lymphocytes, the goblet cell count and apoptosis in the mouse intestine[J].Experimental Parasitology, 2011, 128 (4) :419-426.

    [22]

    De Deckere E, Kloots W J, Van Amelsvoort J.Resistant starch decreases serum total cholesterol and triacylglycerol concentrations in rats[J].The Journal of Nutrition, 1993, 123 (12) :2142-2151.

    [23]

    Raben A, Tagliabue A, Christensen N J, et al.Resistant starch:The effect on postprandial glycemia, hormonal response, and satiety[J].The American Journal of Clinical Nutrition, 1994, 60 (4) :544-551.

    [24]

    Dubosi M, Gilles K A, Hamilton J K.A.Colorimetric method for the determination of sugars[J].Nature, 1951, 28:167-168.

    [25]

    Miao M, Ma Y J, Jiang B, et al.Structural elucidation and in vitro fermentation of extracellularα-D-glucan from Lactobacillus reuteri SK24.003[J].Bioactive Carbohydrates and Dietary Fibre, 2015, 6:109-116.

    [26]

    Fenster K M, Rankin S A, Steele J L.Accumulation of short n-chain ethyl esters by esterases of lactic acid bacteria under conditions simulating ripening Parmesan cheese[J].Journal of Dairy Science, 2003, 86 (9) :2818-2825.

    [27]

    Barker S B, Summerson W H.The colorimetric determination of lactic acid in biological material[J].Journal of Biological Chemistry, 1941, 138 (2) :535-554.

    [28]

    Geng Q, Zhao X H.Influences of exogenous probiotics and tea polyphenols on the production of three acids during the simulated colonic fermentation of maize resistant starch[J].Journal of Food Science and Technology, 2014:1-8.

    [29]

    Zhao X H, Geng Q.Acid production and conversion of konjac glucomannan during in vitro colonic fermentation affected by exogenous microorganisms and tea polyphenols[J].International Journal of Food Science and Nutrition, 2016, 67:274-282.

    [30]

    Lopez H W, Levrat-Verny M A, Coudray C, et al.Class 2resistant starches lower plasma and liver lipids and improve mineral retention in rats[J].Journal of Nutrition, 2001, 131:1283-1289.

    [31]

    Duncan S H, Louis P, Flint H J.Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product[J].Applied and Environmental Microbiology, 2004, 70 (10) :5810-5817.

    [32]

    Ying X, Gong J, Goff H D, et al.Effects of pig colonic digesta and dietary fibres on in vitro microbial fermentation profiles[J].Bioactive Carbohydrates and Dietary Fibre, 2013, 1 (2) :120-130.

    [33]

    Drzikova B, Dongowski G, Gebhardt E, et al.The composition of dietary fibre-rich extrudates from oat affects bile acid binding and fermentation in vitro[J].Food Chemistry, 2005, 90 (1) :181-192.

    [34]

    Hamer H M, Jonkers D, Venema K, et al.Review article:The role of butyrate on colonic function[J].Alimentary Pharmacology&Therapeutics, 2008, 27:104-119.

    [35]

    Kautenburger T, Beyer-Sehlmeyer G, Festag G, et al.The gut fermentation product butyrate, a chemopreventive agent, suppresses glutathione S-transferase theta (h GSTT1) and cell growth more in human colon adenoma (LT97) than tumor (HT29) cells[J].Journal of Cancer Research and Clinical Oncology, 2005, 131:692-700.

    [36]

    Borowicki A, Michelmann A, Stein K, et al.Fermented wheat aleurone enriched with probiotic strains LGG and Bb12 modulates markers of tumor progression in human colon cells[J].Nutrition and Cancer, 2011, 63:151-160.

    [37]

    Kaelin W G, Thompson C B.Cancer clues from cell metabolism[J].Nature, 2010, 465:562-564.

    [38]

    Doherty J R, Cleveland J L.Targeting lactate metabolism for cancer therapeutics[J].Journal of Clinical Investigation, 2013, 123:3685-3692.

计量
  • 文章访问数:  193
  • HTML全文浏览量:  28
  • PDF下载量:  253
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-20

目录

    /

    返回文章
    返回
    x 关闭 永久关闭