• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

色氨酸转运系统改造对大肠杆菌产L-色氨酸的影响

李晶, 石斌超, 王晨阳, 赵志军, 史吉平

李晶, 石斌超, 王晨阳, 赵志军, 史吉平. 色氨酸转运系统改造对大肠杆菌产L-色氨酸的影响[J]. 食品工业科技, 2017, (15): 157-163. DOI: 10.13386/j.issn1002-0306.2017.15.030
引用本文: 李晶, 石斌超, 王晨阳, 赵志军, 史吉平. 色氨酸转运系统改造对大肠杆菌产L-色氨酸的影响[J]. 食品工业科技, 2017, (15): 157-163. DOI: 10.13386/j.issn1002-0306.2017.15.030
LI Jing, SHI Bin-chao, WANG Chen-yang, ZHAO Zhi-jun, SHI Ji-ping. Effect of engineering of L-tryptophan transport system on L-tryptophan production in Escherichia coli[J]. Science and Technology of Food Industry, 2017, (15): 157-163. DOI: 10.13386/j.issn1002-0306.2017.15.030
Citation: LI Jing, SHI Bin-chao, WANG Chen-yang, ZHAO Zhi-jun, SHI Ji-ping. Effect of engineering of L-tryptophan transport system on L-tryptophan production in Escherichia coli[J]. Science and Technology of Food Industry, 2017, (15): 157-163. DOI: 10.13386/j.issn1002-0306.2017.15.030

色氨酸转运系统改造对大肠杆菌产L-色氨酸的影响

基金项目: 

国家自然科学基金青年科学基金项目(31300048);

详细信息
    作者简介:

    李晶 (1990-) , 男, 硕士研究生, 研究方向:生物化学与分子生物学, E-mail:18989875099@126.com。;

    史吉平 (1964-) , 男, 博士, 研究员, 研究方向:生物化工产品生产关键技术研究, E-mail:shijp@sari.ac.cn。;

  • 中图分类号: Q78

Effect of engineering of L-tryptophan transport system on L-tryptophan production in Escherichia coli

  • 摘要: 近年来,转运系统改造已经成为氨基酸菌株菌种改良的重要手段。本研究以工业生产菌Escherichia coli MT-01/p Trp-01为出发菌株,首先利用Red重组技术,在菌株MT-01/p Trp-01基因组上敲除了色氨酸吸收基因mtr,发酵结果表明,敲除敲除突变菌的L-色氨酸产量达到35.87 g/L,与出发菌株E.coli MT-01/p Trp-01相比提高了32%;在此基础上,进一步考察了三种不同启动子(Pr,Ptac,Pser A)控制下L-色氨酸分泌基因ydd G的差异表达对菌体生长及菌株产L-色氨酸的影响。结果表明,当采用组成型启动子tac时,ydd G基因的过表达菌株L-色氨酸的产量为41.01 g/L,比mtr敲除菌株E.coli MT-11/p Trp-01的产量提高了14.3%,当采用温度诱导型启动子Pr调控ydd G基因表达时,L-色氨酸的产量与mtr敲除菌株E.coli MT-11/p Trp-01的产量相比提高了9.3%,L-色氨酸的产量达到了39.22 g/L;而采用基因ser A的天然启动子调控ydd G表达时,菌体的生长受到了明显抑制,L-色氨酸产量仅有27.1 g/L的色氨酸。综上,大肠杆菌基因mtr的敲除和基因ydd G的过表达均可以有效提高工程菌株生产色氨酸的能力。 
    Abstract: In recent years, the strategy of transport system modification has been widely employed for the development of amino acid production strains.In the present study, the industrial production strain Escherichia coli MT-01/p Trp-01 was chose as the start strain, the L-tryptophan uptake gene of mtr knockout mutant strain were built by the method of Red homologous recombination, the fermentation results of the mtr mutant showed that the production of tryptophan was 35.87 g/L, which was32% higher than that of the origin strain.Furthermore, the L-tryptophan excretion gene of ydd G was overexpressed at different levels by fusing with three different promoter ( Pr, Ptac and Pser A) , and the L-tryptophan yield and the cell growth of gene ydd G overexpression mutants were studied.The fermentation results showed that the ydd G overexpression mutant fused with the constitutive promoter of tac increased the production of L-tryptophan to 41.01 g/L, which was 14.3% higher than that of the gene mtr knockout strain, the yddg overexpression mutant driven by the temperature inducible promoter Pr produced 39.22 g/L L-tryptophan, which was 9.3% higher than that of the gene mtr knockout strain. However, the yddg overexpression mutant driven by the promoter ser A only produced 27.1 g/L L-tryptophan, and the cell growth of strain got significantly restrained.To sum up, overexpression of gene ydd G and knockout of gene mtr are beneficial to improve the ability of engineering strains to produce L-tryptophan.
  • [1]

    Leuchtenberger W, Huthmacher K, Drauz K.Biotechnological production of amino acids and derivatives:current status and prospects[J].Applied Microbiology and Biotechnology, 2005, 69 (1) :1-8.

    [2]

    Bongaerts J, Mer M K, Müller U, et al.Metabolic engineering for microbial production of aromatic amino acids and derived compounds[J].Metabolic Engineering, 2001.

    [3]

    Zhao Z, Zou C, Zhu Y, et al.Development of l-tryptophan production strains by defined genetic modification in Escherichia coli[J].Journal of Industrial Microbiology&Biotechnology, 2011, 38 (12) :1921-1929.

    [4]

    Liu L, Duan X, Wu J.L-tryptophan production in Escherichia coli improved by weakening the pta-acka pathway[J].PLOS ONE, 2016, 11 (6) :e158200.

    [5]

    Chen L, Zeng A.Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration[J].Applied Microbiology and Biotechnology, 2017, 101 (2) :559-568.

    [6]

    Ikeda M.Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering[J].Applied Microbiology and Biotechnology, 2006, 69 (6) :615-626.

    [7]

    Rodriguez A, Martnez J A, Flores N, et al.Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds[J].Microbial Cell Factories, 2014.

    [8]

    Lee K H, Park J H, Kim T Y, et al.Systems metabolic engineering of Escherichia coli for L-threonine production[J].Mol Syst Biol, 2007, 3:149.

    [9]

    Park J H, Lee K H, Kim T Y, et al.Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation[J].Proceedings of the National Academy of Sciences, 2007, 104 (19) :7797-7802.

    [10] 崔云风, 石斌超, 李晶, 等.大肠杆菌丝氨酸转运系统单基因敲除对丝氨酸生产的影响[J].食品工业科技, 2016 (14) :191-195.
    [11] 梁媛, 杨书尧, 刘宏亮, 等.大肠杆菌转运蛋白Sst T和Rht C的改造对L-苏氨酸产量的影响[J].现代食品科技, 2014, 4 (4) :99-103.
    [12]

    Doroshenko, Airich V, Vitushkina L, et al.ydd G from Escherichia coli promotes export of aromatic amino acids[J].Fems Microbiology Letters, 2007.

    [13]

    Liu Q, Cheng Y, Xie X, et al.Modification of tryptophan transport system and its impact on production of L-tryptophan in Escherichia coli[J].Bioresource Technology, 2012.

    [14]

    Wang J, Cheng L K, Wang J, et al.Genetic engineering of Escherichia coli to enhance production of L-tryptophan[J].Applied Microbiology and Biotechnology, 2013.

    [15]

    Ikeda M, Katsumata R.Tryptophan production by transport mutants of Corynebacterium glutamicum[J].Bioscience Biotechnology&Biochemistry, 1995.

    [16]

    Zhao Z, Chen S, Wu D, et al.Effect of gene knockouts of Ltryptophan uptake system on the production of l-tryptophan in Escherichia coli[J].Process Biochemistry, 2012.

    [17]

    Gu P, Yang F, Kang J, et al.One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of L-tryptophan in Escherichia coli[J].Microbial Cell Factories, 2012, 11 (1) :30.

    [18]

    Gu P, Yang F, Li F, et al.Knocking out analysis of tryptophan permeases in Escherichia coli for improving L-tryptophan production.[J].Applied Microbiology and Biotechnology, 2013, 97 (15) :6677-6683.

    [19]

    Baba T, Ara T, Hasegawa M, et al.Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:the Keio collection[J].Molecular Systems Biology, 2006, 2:2006-2008.

    [20] 董洪亮, 韩先干, 白灏, 等.λp L/pR-c I857温控系统的改造及其对大肠杆菌菌蜕制备的影响[J].生物工程学报, 2012 (12) :1423-1430.
    [21] 周丽, 邓璨, 崔文璟, 等.温度调节基因开关调控大肠杆菌发酵合成L-丙氨酸[J].微生物学通报, 2015 (11) :2272-2281.
    [22] 张大军, 冯博, 皇甫永穆.双Tac启动子的构建及其对人白细胞介素2在大肠杆菌中表达的影响[J].同济医科大学学报, 1993 (4) :226-229.
    [23] 唐玮, 李键, 陈军, 等.大肠杆菌异源生产丁醇途径组装及启动子优化[J].生物工程学报, 2012 (11) :1328-1336.
    [24] 张雪, 温廷益.Red重组系统用于大肠杆菌基因修饰研究进展[J].中国生物工程杂志, 2008 (12) :89-93.
    [25] 张绪梅, 郭长江, 刘云, 等.大肠杆菌trp BA基因的克隆表达[J].生物技术通讯, 2006 (1) :12-14.
    [26] 郑丽娟, 陈少云, 徐刚, 等.利用双启动子载体构建产异丁醇大肠杆菌[J].中国生物工程杂志, 2013 (8) :66-72.
计量
  • 文章访问数:  246
  • HTML全文浏览量:  46
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-02

目录

    /

    返回文章
    返回
    x 关闭 永久关闭