Progress in the structure and catalytic mechanism ofβ-1, 3-glucanases
-
摘要: β-1,3-葡聚糖酶广泛存在于细菌、真菌、植物和无脊椎动物中,因来源的差异,β-1,3葡聚糖酶的生理功能多样,如参与植物生长发育、提高或诱导抗病性、提供菌体营养、调节真菌细胞壁稳定性和刚性、参与病毒释放和入侵等。酶的结构研究是探索酶催化反应机理、挖掘酶催化特性以及酶理性设计改造的基础。本文对晶体结构研究最充分的GH16家族细菌β-1,3-葡聚糖酶的结构特征及催化机理进行综述,并通过与GH17家族植物来源β-1,3-葡聚糖酶的结构比较,揭示细菌β-1,3-葡聚糖酶的作用机制,为进一步改造和利用该酶,实现其在植物保护、食品和制药等领域的应用提供重要参考。Abstract: β-1, 3-glucanases are widespread throughout bacteria, fungi, plants and invertebrates. They play various physiological roles due to the diversity of origin, such as participating in plant growth and development, defending against pathogens in plant, providing nutrients for bacteria, regulating fungal cell wall stability and rigidity, and involving in the release and invasion of virus.The research of enzyme structure is the basis to explore the mechanism of enzyme catalyzed reaction, to characterize enzyme catalytic properties and to design and transform the enzyme.The structure and catalytic mechanism of GH16 bacterial β-1, 3-glucanase were thoroughly reviewed.By comparing with the structure of GH17 plant β-1, 3-glucanases, this study was attempted to reveal how bacterial β-1, 3-glucanases hydrolyze polysaccharide, and provides an important reference for further modification and utilization of bacterial β-1, 3-glucanases in plant protection, food and pharmaceutical fields.
-
Keywords:
- β-1, 3-glucanases; /
- crystal structure; /
- catalytic mechanism; /
- substrate specificity; /
-
[1] Jadhav SB, Gupta A.Studies on application ofβ-1, 3glucanase in the degradation of glucans produced by Botrytis cinerea and inhibition of fungal growth[J].Biocatalysis and Agricultural Biotechnology, 2016, 7:45-47.
[2] Blttel V, Larisika M, Pfeiffer P.β-1, 3-Glucanase from Delftia tsuruhatensis strain MV01 and its potential application in vinification[J].Applied and Environmental Microbiology, 2011, 77 (3) :983-990.
[3] 李孝辉, 钱玉英.大麦饲料的开发及β—葡聚糖酶的应用[J].粮食与饲料工业, 1997 (8) :19-20. [4] 徐敏, 李晶, 郑志永.哈茨木霉产水解热凝胶的内切β-1, 3-葡聚糖酶的分离纯化[J].食品工业科技, 2014, 35 (12) :157-161. [5] 畅晓洁, 郑必胜, 赵欣.裂褶菌产内切β-1, 3-葡聚糖酶的分离纯化[J].食品工业科技, 2012, 33 (4) :227-229. [6] 陈小云, 李坚斌, 林莹.β-1, 3-葡聚糖酶和几丁质酶在热带水果保鲜中的应用[J].食品工业科技, 2008 (5) :96. [7] Fujimori N, Enoki S, Suzuki A.Grape apoplasmicβ-1, 3-glucanase confers fungal disease resistance in Arabidopsis[J].Scientia Horticulturae, 2016, 200:105-110.
[8] Mouyna I, Aimanianda V, LatgéJP.GH16 and GH81 familyβ- (1, 3) -glucanases in Aspergillus fumigatus are essential for conidial cell wall morphogenesis[J].Cellular Microbiology, 2016, 18 (9) :1285-1293.
[9] Fuchs K-P, Zverlov VV, Velikodvorskaya GA.Lic16A of Clostridium thermocellum, a non-cellulosomal, highly complex endo-β-1, 3-glucanase bound to the outer cell surface[J].Microbiology, 2003, 149 (4) :1021-1031.
[10] Yamamoto M, Ezure T, Watanabe T.C-Terminal domain ofβ-1, 3-glucanase H in Bacillus circulans IAM1165 has a role in binding to insolubleβ-1, 3-glucan[J].FEBS Letters, 1998, 433 (1-2) :41-43.
[11] Kim PI, Chung K-C.Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908[J].FEMS Microbiology Letters, 2004, 234 (1) :177-183.
[12] Hong T-Y, Meng M.Biochemical characterization and antifungal activity of an endo-1, 3-β-glucanase of Paenibacillus sp.isolated from garden soil[J].Applied Microbiology and Biotechnology, 2003, 61 (5-6) :472-478.
[13] Hong T-Y, Hsiao Y-Y, Meng M.The 1.5structure of endo-1, 3-β-glucanase from Streptomyces sioyaensis-evolution of the active-site structure for 1, 3-β-glucan-binding specificity and hydrolysis[J].Acta Crystallographica Section D Biological Crystallography, 2008, 64 (9) :964-790.
[14] Masuda S, Endo K, Koizumi N.Molecular identification of a novelβ-1, 3-glucanase from alkaliphilic Nocardiopsis sp.strain F96[J].Extremophiles, 2006, 10 (3) :251-255.
[15] Jeng WY, Wang NC, Lin CT.Crystal structures of the laminarinase catalytic domain from Thermotoga maritima MSB8 in complex with inhibitors-essential residues for beta-1, 3-and beta-1, 4-glucan selection[J].The Journal of Biological Chemistry, 2011, 286 (52) :45030-45040.
[16] Fibriansah G, Masuda S, Koizumi N.The 1.3 A crystal structure of a novel endo-beta-1, 3-glucanase of glycoside hydrolase family 16 from alkaliphilic Nocardiopsis sp.strain F96[J].Proteins, 2007, 69 (3) :683-690.
[17] Dong W, Huang J, Li Y.Crystal structural basis for Rv0315, an immunostimulatory antigen and inactive beta-1, 3-glucanase of Mycobacterium tuberculosis[J].Scientific Reports, 2015, 5:15073.
[18] Labourel A, Jam M, Jeudy A.The beta-glucanase Zg Lam A from Zobellia galactanivorans evolved a bent active site adapted for efficient degradation of algal laminarin[J].The Journal of Biological Chemistry, 2014, 289 (4) :2027-2042.
[19] Labourel A, Jam M, Legentil L.Structural and biochemical characterization of the laminarinase Zg Lam CGH16 from Zobellia galactanivorans suggests preferred recognition of branched laminarin[J].Acta Crystallographica Section D, Biological Crystallography, 2015, 71 (Pt 2) :173-184.
[20] Cota J, Alvarez TM, Citadini AP.Mode of operation and lowresolution structure of a multi-domain and hyperthermophilic endo-beta-1, 3-glucanase from Thermotoga petrophila[J].Biochemical and Biophysical Research Communications, 2011, 406 (4) :590-594.
[21] Michel G, Chantalat L, Duee E.Theκ-carrageenase of P.carrageenovora features a tunnel-shaped active site-a novel insight in the evolution of Clan-B glycoside hydrolases[J].Structure, 2001, 9 (6) :513-525.
[22] Welfle K, Misselwitz R, Welfle H.Influence of Ca2+on conformation and stability of three bacterial hybrid glucanases[J].European Journal of Biochemistry, 1995, 229 (3) :726-735.
[23] Bleicher L, Prates ET, Gomes TC.Molecular basis of the thermostability and thermophilicity of laminarinases-X-ray structure of the hyperthermostable laminarinase from Rhodothermus marinus and molecular dynamics simulations[J].The Journal of Physical Chemistry B, 2011, 115 (24) :7940-7949.
[24] Ilari A, Fiorillo A, Angelaccio S.Crystal structure of a family16 endoglucanase from the hyperthermophile Pyrococcus furiosus-structural basis of substrate recognition[J].The FEBS Journal, 2009, 276 (4) :1048-1058.
[25] Krah M, Misselwitz R, Politz O.The laminarinase from thermophilic eubacterium Rhodothermus marinus[J].European Journal of Biochemistry, 1998, 257 (1) :101-111.
[26] Davies G, Henrissat B.Structures and mechanisms of glycosyl hydrolases[J].Structure, 1995, 3 (9) :853-859.
[27] Wojtkowiak A, Witek K, Hennig J.Structures of an activesite mutant of a plant 1, 3-β-glucanase in complex with oligosaccharide products of hydrolysis[J].Acta Crystallographica Section D-Biological Crystallography, 2013, 69 (1) :52-62.
[28] Chen L, Garrett TP, Fincher GB.A tetrad of ionizable amino acids is important for catalysis in barleyβ-glucanases[J].Journal of Biological Chemistry, 1995, 270 (14) :8093-8101.
[29] Witek AI, Witek K, Hennig J.Conserved Cys residue influences catalytic properties of potato endo- (1→3) -β-glucanase GLUB20-2[J].Acta Biochimica Polonica, 2008, 55 (4) :791-797.
[30] Akiyama T, Shibuya N, Hrmova M.Purification and characterization of a (1→3) -β-D-glucan endohydrolase from rice (Oryza sativa) bran[J].Carbohydrate Research, 1997, 297 (4) :365-374.
[31] Peumans WJ, Barre A, Derycke V.Purification, characterization and structural analysis of an abundantβ-1, 3-glucanase from banana fruit[J].European Journal of Biochemistry, 2000, 267 (4) :1188-1195.
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: