• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

利用纤维素酶降解琼脂糖的条件优化

李庆旺, 熊瑶, 蔡坤淇, MIAO Song, 张龙涛, 郑宝东

李庆旺, 熊瑶, 蔡坤淇, MIAO Song, 张龙涛, 郑宝东. 利用纤维素酶降解琼脂糖的条件优化[J]. 食品工业科技, 2017, (14): 156-161. DOI: 10.13386/j.issn1002-0306.2017.14.031
引用本文: 李庆旺, 熊瑶, 蔡坤淇, MIAO Song, 张龙涛, 郑宝东. 利用纤维素酶降解琼脂糖的条件优化[J]. 食品工业科技, 2017, (14): 156-161. DOI: 10.13386/j.issn1002-0306.2017.14.031
LI Qing-wang, XIONG Yao, CAI Kun-qi, MIAO Song, ZHANG Long-tao, ZHENG Bao-dong. Optimization of enzymolysis conditions for degradation of agarose by cellulase[J]. Science and Technology of Food Industry, 2017, (14): 156-161. DOI: 10.13386/j.issn1002-0306.2017.14.031
Citation: LI Qing-wang, XIONG Yao, CAI Kun-qi, MIAO Song, ZHANG Long-tao, ZHENG Bao-dong. Optimization of enzymolysis conditions for degradation of agarose by cellulase[J]. Science and Technology of Food Industry, 2017, (14): 156-161. DOI: 10.13386/j.issn1002-0306.2017.14.031

利用纤维素酶降解琼脂糖的条件优化

详细信息
    作者简介:

    李庆旺 (1988-) , 男, 硕士研究生, 研究方向:农产品加工技术, E-mail:1165326411@qq.com。;

    张龙涛 (1979-) , 男, 博士, 副教授, 研究方向:食品材料与结构设计, E-mail:zlongtao@hotmail.com。;

  • 中图分类号: TS201.2

Optimization of enzymolysis conditions for degradation of agarose by cellulase

  • 摘要: 本文以还原糖生成量为指标,研究纤维素酶降解琼脂糖的条件。在单因素实验的基础上,通过Box-Behnken实验设计和响应面分析对琼脂糖酶解条件进行优化,确定4个因子(纤维素酶含量、酶解温度、p H和酶解时间)的适宜水平,建立纤维素酶含量、酶解温度、p H和酶解时间与酶解率之间的回归模型,并对酶解产物进行初步鉴定。最优酶解条件:底物含量0.2%、纤维素酶含量1909.3 U/m L、酶解温度50.0℃、p H4.9、酶解时间24.2 h,该条件下琼脂糖的酶解率为29.58%±0.26%。薄层色谱(TLC)鉴定结果表明酶解主要产物为聚合度26的琼胶低聚糖。 
    Abstract: In this paper, the conditions of cellulose enzymatic degradation of agarose were studied with the yield of reducing sugar as the index. Following single factor experiment, the enzymatic hydrolysis conditions of agarose were optimized by four factors ( cellulase content, enzymolysis temperature, p H and enzymolysis time) Box-Behnken experiment design and response surface methodology ( RSM) , and a regression model was established for predicting the enzymatic hydrolysis yield at different levels of cellulase content, enzymolysis temperature, p H and enzymatic hydrolysis time. In addition, the enzymatic hydrolysate products were preliminary identified. The optimum enzymolysis parameter, including, the substrate content was 0.2%, the cellulase content was 1909.3 U/m L, the enzymolysis temperature was 50.0 ℃, the p H was 4.9, and the enzymolysis time was24.2 h. Under these conditions, the enzymolysis rate of agarose reached 29.58% ± 0.26%. The results of thin layer chromatography ( TLC) showed that the main products were agar oligosaccharides with polymerization degree of 26.
  • [1]

    Seo Y B, P J, Huh I Y, et al.Agarose hydrolysis by two-stage enzymatic process and bioethanol production from the hydrolysate[J].Process Biochemistry, 2016, 51 (6) :759-764.

    [2]

    Shin M H, Lee D Y, Wohlgemuth G, et al.Global metabolite profiling of agarose degradation by Saccharophagus degradans2-40[J].New Biotechnology, 2010, 27 (2) :156-168.

    [3] 刘美英, 梅建凤, 易喻, 等.琼胶寡糖生物活性的研究进展[J].药物生物技术, 2008, 15 (6) :493-496.
    [4]

    Enoki T, Tominaga T, Takashima F, et al.Anti-tumorpromoting activities of agaro-oligosaccharides on two-stage mouse skin carcinogenesis[J].Biological&Pharmaceutical Bulletin, 2012, 35 (7) :1145-1149.

    [5]

    Bhattarai Y, Kashyap P C.Agaro-oligosaccharides:a new frontier in the fight against colon cancer?[J].American Journal of Physiology Gastrointestinal and Liver Physiology, 2016, 310 (6) :G335-G343.

    [6]

    Higashimura Y, Naito Y, Takagi T, et al.Preventive effect of agaro-oligosaccharides on non-steroidal anti-inflammatory drug-induced small intestinal injury in mice[J].Journal of Gastroenterology&Hepatology, 2014, 29 (2) :310-317.

    [7]

    Higashimura Y, Naito Y, Takagi T, et al.Protective effect of agaro-oligosaccharides on gut dysbiosis and colon tumorigenesis in high-fat diet-fed mice[J].American Journal of Physiology Gastrointestinal&Liver Physiology, 2016, 310 (6) :G367-G375.

    [8] 刘刚.琼胶寡糖的制备及生物活性研究[D].上海:上海海洋大学, 2010.
    [9] 赵永强.龙须菜琼胶糖的制备及其副产物的研究[D].上海:广东海洋大学, 2010.
    [10] 许艳婷, 王秀娟, 苏小玲, 等.液相色谱-电喷雾-四级杆-飞行时间质谱法分析琼胶寡糖[J].分析化学, 2011, 39 (12) :1798-1804.
    [11]

    Kang O L, Ghani M, Hassan O, et al.Novel agarooligosaccharide production through enzymatic hydrolysis:Physicochemical properties and antioxidant activities[J].Food Hydrocolloids, 2014, 42:304-308.

    [12]

    Yun E J, Lee S, Kim J H, et al.Enzymatic production of 3, 6-anhydro-L-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities[J].Applied Microbiology and Biotechnology, 2013, 97 (7) :2961-2970.

    [13]

    Heetaek K, Yun E J, Wang D M, et al.High temperature and low acid pretreatment and agarase treatment of agarose for the production of sugar and ethanol from red seaweed biomass[J].Bioresource Technology, 2013, 136 (12) :582-587.

    [14]

    Hsu P H, Wei C H, Lu W J, et al.Extracellular production of a novel endo-β-agarase Aga A from Pseudomonas vesicularis MA103 that cleaves agarose into neoagarotetraose and neoagarohexaose[J].International Journal of Molecular Sciences, 2015, 16 (3) :5590-5603.

    [15]

    Ramos K R M, Valdehuesa K N G, Cabulong R B, et al.Overexpression and secretion of Aga A7 from Pseudoalteromonas hodoensis sp.nov in Bacillus subtilis for the depolymerization of agarose[J].Enzyme&Microbial Technology, 2016, 90:19-25.

    [16]

    Koti B A, Shinde M, Lalitha J.Repeated batch production of agar-oligosaccharides from agarose by an amberlite IRA-900immobilized agarase system[J].Biotechnology&Bioprocess Engineering, 2012, 18 (2) :333-341.

    [17]

    Chi W J, Park J S, Kang D K, et al.Production and characterization of a novel thermostable extracellular agarase from Pseudoalteromonas hodoensis newly isolated from the West Sea of South Korea[J].Applied Biochemistry and Biotechnology, 2014, 173 (7) :1703-1716.

    [18]

    Zeng C, Zhang L, Song M, et al.Preliminary characterization of a novelβ-agarase from Thalassospira profundimonas[J].Springer Plus, 2016, 5 (1) :1086.

    [19]

    Li G, Sun M, Wu J, et al.Identification and biochemical characterization of a novel endo-typeβ-agarase Aga W from Cohnella sp.strain LGH[J].Applied Microbiology&Biotechnology, 2015, 99 (23) :1-11.

    [20] 沙玉杰, 杨平平, 何培青, 等.响应面法优化嗜热菌Bacillus sp.BⅡ-5产琼胶酶的发酵培养基条件[J].中国酿造, 2013, 32 (5) :31-35.
    [21] 杨贤庆, 刘刚, 戚勃, 等.响应曲面法优化琼胶的酸水解条件[J].食品科学, 2010, 31 (20) :173-177.
    [22] 曾诚.产琼胶酶菌株的筛选及其酶学性质[D].福州:福建农林大学, 2016.
    [23] 肖琼, 肖安风, 姚德恒, 等.琼胶酶水解工艺条件的优化及产物分析[J].中国食品学报, 2015, 15 (12) :99-106.
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-27

目录

    /

    返回文章
    返回
    x 关闭 永久关闭