Optimization of fermentation conditions for killer toxin production from Cyberlindnera mrakii WM1 by response surface methodology
-
摘要: 以保藏于本实验室的海洋酵母菌种资源库的酵母菌株Cyberlindnera mrakii WM1为研究对象,以人类条件致病菌白色假丝酵母Canidia albicans YTS-03为嗜杀毒素抑菌活性测试指示菌,以抑菌圈直径为考察指标,对拟威尔嗜杀酵母WM1代谢产嗜杀因子的发酵条件进行优化。首先以接种量、发酵液p H、发酵温度和时间为自变量,确定其四个因素对嗜杀活性的抑菌效果影响显著,再对这四个因素进行响应面实验优化。获得WM1生长代谢产嗜杀因子的最佳发酵条件为:接种量8%,发酵液p H4.0,发酵温度21℃,发酵时间2.5 d。优化后的WM1酵母发酵液的抑菌圈的直径达到21.00 mm,比优化前(16.5 mm)提高27.3%;菌液浓度也达2.58×108CFU/m L,比优化前(1.9×108CFU/m L)提高了35.8%。同时,最优发酵条件下获得的实验结果与模型预测值相吻合,说明建立的回归模型是切实可行的。Abstract: The fermentation conditions for killer toxin production from Cyberlindnera mrakii WM1 preserved in the laboratory of marine yeast resource pool were optimized. The diameter of inhibition zone ( mm) was used as evaluation index and quantified against Canidia albicans YTS-03. Firstly, chose inoculum concentration, p H value, fermentation temperature and time as independent variables, based on these single factor tests, response surface methodology with the four variables was employed to optimize the fermentation conditions for killer toxin production. The optimum fermentation conditions of Cyberlindnera mrakii WM1 production for the growth and metabolism of killer toxin were inoculation of 8%, p H of 4.0, fermentation temperature of21 ℃, fermentation time of 2.5 days. Under these optimal conditions, the WM1 killer yeast fermentation broth reached its maximum capacity of 21.00 mm, than before optimization ( 16.5 mm) to improve 27.3%.The number of viable cells also reached2.58 × 108CFU/m L, compared with the previous optimization ( 1.9 × 108CFU/m L) improved 35.8%. At the same time, the experimental results obtained under the optimal fermentation conditions were in agreement with the predicted values, indicated the established regression model was feasible.
-
Keywords:
- response surface /
- killer yeast /
- killer toxin /
- fermentation conditions
-
[1] 王祥红, 贾仁洁, 李静, 等.嗜杀酵母的生物学功能及其应用[J].生物技术通报, 2013 (4) :33-38. [2] Schmitt MJ, Breinig F.The viral killer system in yeast:from molecular biology to application[J].FEMS Microbiol, 2002, 26 (3) :257-276.
[3] Chi ZM, Liu GL, Zhao SF, et al.Marine yeasts as biocontrol agents and producers of bio-products[J].Appl Microbiol Biotechnol, 2010, 86 (5) :1227-1241.
[4] Magliani W, Conti S, Travassos LR, et al.From yeast killer toxins to antibiobodies and beyond[J].FEMS Microbiol Lett, 2008, 288 (1) :1-8.
[5] 彭莹.土星拟威尔酵母WC91-2菌株嗜杀因子和β-1, 3-葡聚糖酶的研究[D].青岛:中国海洋大学, 2010. [6] Wang XH, Chi ZM, Yue LX, et al.A marine killer yeast against the pathogenic yeast strain in crab (Portunus trituberculatus) and an optimization of the toxin production[J].Microbiol Res, 2007a, 162 (1) :77-85.
[7] Zhang TR, Yu CQ.Optimization of mortierella isabellina culture conditions in fermentation of arachidonic acid by response surface methodology[J].Acad Period Farm Products Processing, 2012 (2) :27-38.
[8] Su T, Bao B, Yan T, et al.Response surface methodology to optimize marine microbe culture for producing fungi fibrinolytic compound[J].Chin J Biotech, 2013, 29 (6) :857-861.
[9] 刘国荣, 张郡莹, 王成涛, 等.响应面法优化双歧杆菌B04代谢产细菌素的发酵条件[J].食品科学, 2013, 34 (3) :147-152. [10] 胡小媛, 滕达, 张勇, 等.防腹泻布拉酵母培养条件的响应面法优化[J].生物技术通报, 2013 (6) :194-199. [11] 蔺立杰, 赵媛, 王建中, 等.核桃酱油制曲条件的优化[J].食品与发酵工业, 2012, 38 (5) :96-100. [12] 纪凤娣, 鲁蟒, 张建, 等.商用酱油曲精中微生物分布研究[J].中国酿造, 2010, 29 (6) :80-82. [13] 申乃坤, 王青艳, 陆雁, 等.响应面法优化耐高温酵母生产高浓度乙醇[J].生物工程学报, 2010, 26 (1) :42-47. [14] 左爱连, 张伟国.利用Design-Expert软件优化丝氨酸羟甲基转移酶产酶培养基[J].生物技术, 2008, 18 (3) :45-49.
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: