Comparative research of two omega-3-enriched protein prepared from Antarctic krill ( Euphausia superba) with different methods
-
摘要: 以冷冻南极磷虾为原料,通过优化自溶条件,采用控制自溶的方式,制备一种富含ω-3的复合物,并就其基本组成、蛋白质变化与分布、营养评价等,与等电点促溶/促沉法制备的富脂蛋白进行对比研究。优化的自溶条件为55℃和p H7.5条件下自溶3 h。实验结果表明,两种蛋白均为富含ω-3多不饱和脂肪酸的蛋白-脂质复合物,含有全部的人体必需氨基酸,超过FAO/WHO/UNU对食品蛋白质中必需氨基酸的要求,而自溶法制备的富脂蛋白在总脂、磷脂、ω-3多不饱和脂肪酸含量,以及必需氨基酸总量上均优于后者,平均值分别达到了43.88%干基、48.84%总脂、31.52%脂质和517.4 mg/g蛋白。由此可见,控制自溶是一种高效的制备富脂蛋白的方式,有助于磷虾富脂蛋白作为功能性海洋食品的开发。
-
关键词:
- 南极磷虾 /
- 富脂蛋白 /
- 自溶 /
- ω-3多不饱和脂肪酸
Abstract: Omega-3-enriched protein ( OEP) was prepared with controlled autolysis from Antarctic krill ( Euphausia superba) meat ( AKM) with optimization, and compared with OEP prepared with isoelectric solubilization/precipitation ( ISP) from basic composition, nutritional evaluation, and variations and distributions of proteins. The optimized condition was that autolysis at55 ℃ and p H7.5 for 3 h, either protein was demonstrated to be a protein-lipid complex which was rich in ω-3 polyunsaturated fatty acids ( ω-3 PUFAs) , and exhibited excellent amino-acid composition in all the essential amino acids, exceeding the requirements of the FAO/WHO/UNU for food protein. Total lipid, phospholipid, ω-3 PUFAs and essential amino acids were richer in the OEP prepared with autolysis, and the average values reached 43.88% dry basis, 48.84% total lipid, 31.52% lipid and 517.4 mg/g protein. This study indicated that controlled autolysis was an efficient way of preparation of ω-3-enriched protein, promotingits development as a functional seafood product in future.-
Keywords:
- Antarctic krill /
- ω-3-enriched protein /
- autolysis /
- ω-3 PUFAs
-
[1] Suzuki T, Shibata N.The utilization of Antarctic krill for human food[J].Food Reviews International, 1990, 6:119-147.
[2] Grantham G J.The Southern Ocean:The Utilization of krill[M].Rome:FAO, 1977:1-61.
[3] Chen Y C, Tou J C, Aczynskia J.Amino acid and mineral composition of protein and other components and their recovery yields from whole Antarctic krill (Euphausia superba) using isoelectric solubilization/precipitation[J].Journal of Food Science, 2009, 74:H31-H39.
[4] Virtue P, Johannes R E, Nichols P D, et al.Biochemical composition of Nyctiphanesaustralis and its possible use as an aquaculture feed source:lipids, pigments and fluoride content[J].Marine Biology, 1995, 122:121-128.
[5] Nie Y C, Zhang B, Zhao X Y, et al.Seasonal Variation in Lipids and Protein Content of Antarctic Krill (Euphausia superba) [J].Progress in Fishery Sciences, 2016, 37:1-8.
[6] Jung H R, Kim M A, Seo Y S, et al.Decreasing effect of fluoride content in Antarctic krill (Euphausia superba) by chemical treatments[J].International Journal of Food Science and Technology, 2013, 48:1252-1259.
[7] Wang L Z, Xue C H, Wang Y M, et al.Extraction of proteins with low fluoride level from Antarctic krill (Euphausia superba) and their composition analysis[J].Journal of Agricultural and Food Chemistry, 2011, 59:6108-6112.
[8] Sjo9dahl J, Emmer, Vincent J, et al.Characterization of proteinases from Antarctic krill (Euphausia superba) [J].Protein Expression and Purification, 2002, 26:153-161.
[9] Osnes K K, Mohr V.Peptide hydrolases of Antarctic krill, Euphausia superba[J].Comparative Biochemistry and PhysiologyB:Biochemistry and Molecular Biology, 1985, 82:599-606.
[10] Kimoto N.Classification of proteases in Antarctic krill[J].Agric Biol Chem, 1983, 47 (11) :2577-2583.
[11] 任艳.南极磷虾蛋白加工利用的初步研究[D].青岛:中国海洋大学, 2009. [12] 尚宪明.南极大磷虾脂肪酶提取纯化及其酶学性质研究[D].青岛:中国海洋大学, 2011. [13] 杭虞杰, 李学英, 杨宪时, 等.南极磷虾自溶酶性质的初步研究[J].食品科学, 2011, 32 (13) :198-200. [14] Erlanger B F, Kokowsky N, Cohen W.The preparation and properties of two new chromogenic substrates of trypsin[J].Archs Biochem Biophys, 1961, 95:271-278.
[15] 郑毅, 叶海梅, 吴朝娟, 等.脂肪酶活力测定研究进展[J].工业微生物, 2005, 35 (9) :36-40. [16] Folch J, Lees M, Sloane-Stanley G H.A simple method for the isolation and purification of total lipids from animal tissues[J].J Biol Chem, 1957, 226:497-509.
[17] Marian Kjellevold Malde, Kjell Bjorvatna, Kre Julshamn.Determination of fuoride in food by the use ofalkali fusion and fuoride ion-selective electrode[J].Food Chemistry, 2001, 73:373-379.
[18] O’Farrell PH.High resolution two-dimensional electrophoresis of proteins[J].J Biol Chem, 1975, 250:4007-4021.
[19] 楼乔明.几种海洋动物脂质分析及EPA磷脂的活性[D].青岛:中国海洋大学, 2011. [20] 崔常乐, 滕英来, 汪勇, 等.核磁共振磷谱内标法测定磷脂酰胆碱的含量[J].中国粮油学报, 2016, 31 (5) :158-162. [21] 薛斌, 曹文明, 包杰, 等.自动电位滴定法测定米糠油酸值的研究[J].中国油脂, 2014, 39 (11) :33-37. [22] Kubota M, Sakai K.Autolysis of Antarctic krill protein and its inactivation by combined effects of temperature and p H[J].Trans Tokyo Univ Fish, 1978, 2:53-63.
[23] Konagaya S.Protease activity and autolysis of Antarctic krill[J].Nippon Suisan Gakkaishi, 1980, 46 (2) :175-183.
[24] Turkiewicz M, Kalinowska H, Krystynowicz A, et al.Lipolytic activity of Antarctic krill, Euphausia superba Dana[J].Polish Polar Res, 1995, 16:185-198.
[25] 王灵昭.南极磷虾 (Euphausia superba) 蛋白质深加工新技术的研究[D].青岛:中国海洋大学, 2012. [26] Sands M, Nicol S, Mc Minn A.Fluoride in Antarctic marine crustaceans[J].Marine Biology, 1998, 132:591-598.
[27] Adelung D, Buchholz F, Culik B, et al.Fluoride in tissues of krill Euphausia superba dana and Meganyctiphanes norvegica M.sars in relation to the moult cycle[J].Polar Biol, 1987, 7:43-50.
[28] Xie C L, Kim H S, Shim K B, et al.Organic acid extraction of fluoride from Antarctic krill Euphausia superba[J].Fish Aquat Sci, 2012, 15:203-207.
[29] Yoshikawa K, Inoue N, Kawai Y, et al.Changes of the Solubility and ATPase activity of carp myofibrils during frozen storage at different temperatures[J].Fisheries Science, 2011, 61 (5) :804-812.
[30] Martinez I, Friis T J, Careche M.Post mortem muscle protein degradation duringice-storage of Arctic (Pandalus borealis) andtropical (Penaeus japonicus and Penaeusmonodon) shrimps:a comparative electrophoretic and immunological study[J].J Sci Food Agric, 2001, 81:1199-1208.
[31] Inger V H Kjaersgrd, Mette R Nrrelykke, Flemming Jessen.Changes in cod muscle proteins during frozen storagerevealed by proteome analysis and multivariate dataanalysis[J].Proteomics, 2006, 6:1606-1618.
[32] Li T T, Li J R, Hua W Z, et al.Protein changes in post mortem large yellow croaker (Pseudosciaenacrocea) monitored by SDS-PAGE and proteome analysis[J].Food Control, 2014, 41:49-55.
[33] Sun L C, Chen Y L, Zhong C, et al.Autolysis of krill protein from North Pacific krill Euphausia pacifica during protein recovery via isoelectric solubilization/precipitation[J].Fish Sci, 2014, 80:839-847.
[34] WHO/FAO/UNU.Protein and amino acid requirements in human nutrition.Report of a joint WHO/FAO/UNU expert consultation[R].WHO Technical Report Series 935, 2007.
[35] Sally T, Rosanna W S, Chung E W, et al.Dietary Krill Oil Supplementation Reduces Hepatic Steatosis, Glycemia, and Hypercholesterolemia in High-Fat-Fed Mice[J].J Agric Food Chem, 2009, 57:9339-9345.
[36] Ruxton C, Reed S, Simpson M, et al.Health benefits of omega-3 polyunsaturated fatty acids:a review of the evidence[J].J Hum Nutr Diet, 2004, 17:449-459.
[37] Gigliotti J C, Davenport M P, Beamer S K, et al.Extraction and characterisation of lipids from Antarctic krill (Euphausia superba) [J].Food Chemistry, 2011, 125:1028-1036.
计量
- 文章访问数: 102
- HTML全文浏览量: 7
- PDF下载量: 208