Chemical oxidative phenolic browning reactions in a sinapic acid model system
-
摘要: 为了明确芥子酸化学氧化的影响因素,为今后更好地控制果蔬及其制品的褐变提供理论依据,本实验以芥子酸建立模拟体系,采用紫外可见分光光度计法在315、420 nm处分别测定芥子酸浓度及氧化产物褐变度。结果表明,对芥子酸化学氧化进行反应动力学拟合,确定符合一级反应动力学模型,其中在p H10.0条件下反应速率最大(5.38 h-1)。正交实验结果表明,温度在0.05水平对芥子酸化学氧化褐变度影响显著,p H在0.1水平对芥子酸化学氧化褐变度影响显著,浓度在0.1水平对芥子酸化学氧化褐变度影响不显著。芥子酸在90℃比40、25℃更容易发生化学氧化,在p H10.0比p H3.7、7.0条件更容易发生化学氧化。芥子酸在高温碱性环境下更易氧化褐变,针对这一特点,在果蔬的加工过程中为尽可能避免褐变的发生,应尽量避免高温高碱等加工操作。Abstract: In order to determine the influence factor of sinapic acid chemical oxidation, so as to provide the basis for better control of fruits and vegetables browning, sinapic acid chemical oxidation simulation system was established. The sinapic acid concentration and browning degree were investigated at 315 nm and 420 nm by ultraviolet visible spectrophotometer.Chemical oxidation of sinapic acid accords with First order reaction kinetics model by kinetic fitting. The rate of chemical oxidation of sinapic acid was maximum at p H10.0 ( 5.38 h-1) .The results of orthogonal test showed that the effect of temperature at 0.05 level on the chemical oxidative browning of sinapinic acid was significant and the effect of p H at 0.1 level on the chemical oxidative browning of sinapic acid was significant. The effect of concentration of sinapic acid at 0.1 level on the chemical oxidative browning of sinapic acid was not significant.Sinapic acid was more prone to chemical oxidation at p H10.0 than p H3.7and p H7.0 and at 90 ℃ than 40 ℃ and 25 ℃.Sinapic acid is more susceptible to oxidative browning in high temperature and alkaline environment.For this feature, in order to as far as possible to avoid the occurrence of browning of fruits and vegetables, high temperature and alkali processing operations should be avoided.
-
Keywords:
- sinapic acid /
- chemical oxidation /
- browning /
- first order reaction kinetics model
-
[1] Chang T S.An updated review of tyrosinase inhibitors[J].International Journal of Molecular Sciences, 2009, 10 (6) :2440-2475.
[2] Queiroz C, Lopes M M, Fialho E, et al.Polyphenol oxidase:characteristics and mechanisms of browning control[J].Food Reviews International, 2008, 24 (4) :361-375.
[3] He Q, Luo Y G.Enzymatic browning and its control in freshcut produce[J].Stewart Postharvest Review, 2007, 3 (6) :1-7.
[4] Bustos M C, Mazzobre M F, Buera M P.Stabilization of refrigerated avocado pulp:effect of allium and brassica extracts on enzymatic browning[J].Food Science and Technology, 2015, 61 (1) :89-97
[5] Constabel C P, Barbehenn R.Defensive roles of polyphenol oxidase in plants.in:Schaller a.Induced plant resistance to herbivory[M].Berlin:Springer Science Business Media BV, 2008:253-269.
[6] 胡燕.水煮藕片褐变机理的研究[D].武汉:华中农业大学, 2008 [7] 易俊洁, 李琳, 冯仑等.超高压处理酸菜褐变机理初探[J].食品工业科技, 2010, 31 (12) :97-99+103 [8] 高海生.果蔬加工过程中褐变及其控制措施的研究进展[J].河北科技师范学院学报, 2013 (4) :1-7+13. [9] Francisco M., Moreno D A, Cartea M E, et al.Simultaneous identification of glucosinolates and phenolic compounds in a representative collection of vegetable brassica rapa[J].Journal of Chromatography, 2009, 1216 (38) :6611-6619.
[10] Harbaum B, Hubbermann E M, Zhu Z, et al.Impact of fermentation on phenolic compounds in leaves of Pak Choi (brassica campestris L.ssp.Chinensis var.communis) and Chinese leaf mustard (brassica juncea coss) [J].Journal of Agricultural and Food Chemistry, 2008, 56 (1) :148-157.
[11] Jiang N, Chung S O, Lee J, et al.Increase of phenolic compounds in new Chinese cabbage cultivar with red phenotype[J].Horticulture, Environment and Biotechnology, 2013, 54 (1) :82-88.
[12] 江萍, 徐贵华, 刘东红, 陈健初, 叶兴乾.15种柑橘果皮中酚酸的含量测定[J].食品与发酵工业, 2008, 34 (6) :124-128. [13] 熊兰兰.平和蜜柚果实贮藏期间黄酮类化合物含量及品质变化的研究[D].福州:福建农林大学, 2012. [14] Nic'iforovic'N, AbramovicˇH.Sinapic acid and its derivatives:natural sources and bioactivity[J].Comprehensive Reviews in Food Science and Food Safety, 2014, 13 (1) :34-51.
[15] 杨汝婷, 郭志成.羟基肉桂酸类化合物的氧化偶联机理研究[J].甘肃科学学报, 2013 (03) :55-58. [16] 綦菁华.苹果浓缩汁二次混浊形成机理及控制技术研究[D].北京:中国农业大学, 2003. [17] 张建勇.酯型茶黄素化学氧化形成的影响因素及其机理研究[D].北京:中国农业科学院, 2007. [18] 董全, 高晗.果蔬加工学[M].郑州:郑州大学出版社, 2011:12-13. [19] 沈金玉, 黄家音, 李晓莉.果蔬酶促褐变机理及其抑制方法研究进展[J].食品研究与开发, 2005, 26 (6) :150-156. [20] 王萍.中国主要芸薹属蔬菜抗氧化能力基因型差异和环境效应的研究[D].杭州:浙江大学, 2005. [21] 胡玉霞.雪里蕻腌渍过程中理化成分及其抗氧化性变化研究[D].杭州:浙江大学, 2007. [22] Naczk M, Wanasundara P K J P D, Shahidi F.Facile spectrophotometric quantification method of sinapic acid in hexane-extracted and methanol-ammonia-water-treated mustard and rapeseed meals[J].Journal of Agricultural and Food Chemistry, 1992, 40 (3) :444-448.
[23] 李元高.物理化学[M].上海:复旦大学出版社, 2013:252-253. [24] Cilliers J L, Singelton V L.Nonenzymic autooxidative phenolic browning reactions in a caffeic acid model system[J].Journal of Agricultural and Food Chemistry, 1989, 37 (4) :890-896.
[25] 张宁.中药成分丁香酸、芥子酸和儿茶素的荧光性质及其分析方法研究[D].石家庄:河北师范大学, 2013. [26] 杨汝婷.无机单电子氧化剂对羟基肉桂酸类化合物的氧化偶联研究[D].甘肃:兰州大学, 2010. [27] 孟宪军, 乔旭光.果蔬加工工艺学[M].北京:中国轻工业出版社, 2012:12-13. [28] 严佩峰.果蔬加工与保鲜技术[M].北京:中国科学技术出版社, 2013:83-83. [29] 陈学红, 秦卫东, 马利华, 戴晓娟.加工工艺条件对果蔬汁的品质影响研究[J].食品工业科技, 2014, 35 (1) :355-362. [30] Patricia C M, Bibiana D Y, Jose P M.Evaluation of microwave technology in blanching of broccoli (Brassica oleracea L.var Botrytis) as a substitute for conventional blanching[J].Procedia Food Science, 2011 (1) :426-432.
计量
- 文章访问数: 210
- HTML全文浏览量: 33
- PDF下载量: 68