• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

番木瓜片热风微波耦合干燥条件及干燥模型建立

易丽, 杨薇, 王晨

易丽, 杨薇, 王晨. 番木瓜片热风微波耦合干燥条件及干燥模型建立[J]. 食品工业科技, 2017, (09): 221-227. DOI: 10.13386/j.issn1002-0306.2017.09.034
引用本文: 易丽, 杨薇, 王晨. 番木瓜片热风微波耦合干燥条件及干燥模型建立[J]. 食品工业科技, 2017, (09): 221-227. DOI: 10.13386/j.issn1002-0306.2017.09.034
YI Li, YANG Wei, WANG Chen. Drying conditions and drying model of papaya slices during combined microwave-convective hot air dehydration[J]. Science and Technology of Food Industry, 2017, (09): 221-227. DOI: 10.13386/j.issn1002-0306.2017.09.034
Citation: YI Li, YANG Wei, WANG Chen. Drying conditions and drying model of papaya slices during combined microwave-convective hot air dehydration[J]. Science and Technology of Food Industry, 2017, (09): 221-227. DOI: 10.13386/j.issn1002-0306.2017.09.034

番木瓜片热风微波耦合干燥条件及干燥模型建立

详细信息
    作者简介:

    易丽 (1992-) , 女, 在读硕士, 主要从事农产品加工与机械的研究, E-mail:710573682@qq.com。;

    杨薇 (1963-) , 女, 硕士, 副教授, 主要从事农产品加工与机械的研究, E-mail:1084406147@qq.com。;

  • 中图分类号: TS255.3

Drying conditions and drying model of papaya slices during combined microwave-convective hot air dehydration

  • 摘要: 为研究番木瓜片采用热风微波耦合干燥的干燥特性和最优工艺组合,选用自制热风微波耦合干燥系统进行实验,得出热风微波耦合干燥曲线、干燥速率曲线及最优工艺组合,并建立干燥模型。结果表明:番木瓜片热风微波耦合干燥速率经历一个短暂的加速期后较长时间处于降速期;番木瓜片热风微波耦合干燥综合效果最优的组合为:热风温度60℃、微波功率密度5.5 W/g、热风风速0.5 m/s,其中微波功率密度对干燥综合效果的影响起主导作用;番木瓜片热风微波耦合干燥动力学模型可用Page方程描述,即MR=exp(-0.0011T-0.0069PD+0.073t(0.0015T2-0.1993T+7.9642);番木瓜片热风微波耦合干燥有效水分扩散系数介于2.533×10-96.0792×10-9m2/s之间,且有效水分扩散模型为:10-10Deff=0.507T+6.72PD+10.1v-32。 
    Abstract: In order to study the drying characteristics and optimum conditions of combined microwave-convective hot air drying of papaya slices, several test index values, such as colour change, rehydration ratio, drying rate and unit energy consumption during drying process were investigated, and the technological parameters of hot air temperatures, microwave power densities and hot air velocities were optimized. The laboratory-made dryer, having the characteristics of microwave power continuously adjustable and the material heated evenly, was used to do single factor test and orthogonal test for combined microwave-convective hot air drying. Combined microwave-convective hot air drying curve and drying rate curve of papaya slices were obtained for different technological parameters.The drying kinetics model and effective moisture diffusion model of papaya slices during combined microwave-convective hot air drying were established. The results showed that combined microwave-convective hot air drying process of papaya slices consisted of a brief acceleration period and a prolonged deceleration period.Combination drying with hot air temperature of 60 ℃, microwave power density of 0.5 W/g and hot air velocity of 0.5 m/s was optimal in terms of comprehensive drying index. Microwave power density was the most significant experimental factor in orthogonal test of combination drying.Page model was proved to be more suitable in describing combined microwave-convective hot air drying characteristics of papaya slices, and the equation was: MR= exp (-0.0011T-0.0069PD+ 0.073t (0.0015T2-0.1993T+7.9642) ) .The effective moisture diffusivity was among 2.533 × 10-9~ 6.0792 × 10-9m2/s, and the effective moisture diffusion model of combination drying of papaya slices was: 10-10Deff= 0.507 T + 6.72PD+ 10.1v-32.
  • [1] 张海东, 胡小婵.世界番木瓜科研发展现状研究[J].世界农业, 2013 (11) :24-27.
    [2]

    Tripathi S, Suzuki J Y, Carr J B, et al.Nutritional composition of Rainbow papaya, the first commercialized transgenic fruit crop[J].Journal of Food Composition and Analysis, 2011, 24 (2) :140-147.

    [3]

    Glass transition Phenomenon on shrinkage of papaya during convective drying[J].Journal of Food Engineering, 2012, 108 (1) :43-50.

    [4]

    MASKAN M.Drying, Shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying[J].Journal of Food Engineering, 2001, 48 (2) :177-182.

    [5]

    Zhang M, Tang J, Mujumdar A S, et al.Trends in microwave related drying of fruits and vegetables[J].Trends in Food Science and Technology, 2006, 17 (10) :524-534.

    [6]

    Gowen A, Nissreen A, Frias J M, et al.Characteristics of cooked chickpeas and soybeans during combined microwaveconvective hot air drying[J].Journal of Food Processing and Preservation, 2007, 31 (4) :433-453.

    [7] 陈桂芬, 宋春芳, 崔政伟.响应面分析法优化热风微波耦合干燥油茶籽工艺[J].食品工业科技, 2012, 33 (3) :272-275.
    [8]

    Babalis S J, Papanicolaou E, Kyriakis N, et al.Valuation of thin-layer drying models for describing drying kinetics of figs (Ficus carica) [J].Journal of Food Engineering, 2006, 75 (2) :205-214.

    [9] 孙帅, 崔政伟.柱状胡萝卜样品热风微波耦合干燥数学模型[J].食品工业科技, 2013, 34 (12) :161-172.
    [10] 张斌尧.一种功率连续可调的热风微波耦合干燥系统的研制[D].昆明:昆明理工大学, 2016.
    [11] GB5009.3-2010食品安全国家标准食品中水分的测定[S].2010.
    [12] 张丽华, 徐怀德, 李顺峰, 等.不同干燥方法对木瓜干燥特性的影响[J].农业机械学报, 2008, 39 (11) :70-75.
    [13] 周韵, 宋春芳, 崔政伟, 等.热风微波耦合干燥胡萝卜片工艺[J].农业工程学报, 2011, 27 (2) :382-386.
    [14] 陈健凯, 林河通, 林艺芬, 等.基于品质和能耗的杏鲍菇微波真空干燥工艺参数优化[J].农业工程学报, 2014, 30 (3) :277-284.
    [15] 王红提, 郭康权, 李鹏等.疏解棉秆的微波干燥动力学及能耗分析[J].农业工程学报, 2015, 31 (19) :294-301.
    [16] 陶菊春, 吴建民.综合加权评分法的综合权重确定新探[J].系统工程理论与实践, 2001, 21 (8) :43-48.
    [17]

    Corrêa P C, Botelho F M, Oliveira G H H, et al.Mathematical modeling of the drying process of corn ears[J].Acta Scientiarum Agronomy, 2011, 33 (4) :575-581.

    [18]

    Shi Q, Zheng Y and Zhao Y.Mathematical modeling on thin-layer heat pump drying of yacon (Smallanthus sonchifolius) slices[J].Energy Conversion and Management, 2013, 71:208-216.

    [19]

    Figiel A.Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods[J].Journal of Food Engineering, 2010, 98 (4) :461-470.

    [20] 姜苗.云南核桃热风干燥特性及传质模拟[D].昆明:昆明理工大学, 2013.
    [21] 杨薇, 黄小丽, 张付杰, 等.脉冲电场预处理马铃薯片微波干燥动力学研究[J].昆明理工大学学报 (自然科版) , 2012, 37 (4) :78-84.
    [22]

    Yi X-K, Wu W-F, Zhang Y-Q, et al.Thin-Layer Drying Characteristics and Modeling of Chinese Jujubes[J].Mathematical Problems in Engineering, 2012, 2012 (4) :94-113.

    [23] 朱文学.食品干燥原理与技术[M].北京:科学出版社, 2009.
    [24]

    KL Yeo.Drying of Guava and Papaya:Impact of Different Drying Methods[J].Drying Technology, 2006, 24 (1) :77-87.

    [25] 杨彬彬.多孔介质干燥分形孔道网络模拟及实验研究[D].北京:中国农业大学, 2006.
    [26] 郭徽, 杨薇, 刘英, 等.云南三七主根干燥特性及其功效指标评价[J].农业工程学报, 2014, 30 (17) :305-313.
    [27]

    Madamba P S, Driscoll R H, Buckle K A.The thin-layer drying characteristics of garlic slices[J].Journal of Food Engineering, 1996, 29 (1) :75-97.

计量
  • 文章访问数:  219
  • HTML全文浏览量:  39
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-16

目录

    /

    返回文章
    返回
    x 关闭 永久关闭