Non-destructive detection of color in chilled mutton based on hyperspectral technique and extreme learning machine
-
摘要: 利用4001000 nm近红外高光谱成像系统对冷鲜羊肉颜色进行快速无损检测研究。采集140个冷鲜羊肉样品(贮藏17 d)光谱图像,并测量其亮度(L*)、红度(a*)、黄度(b*)和饱和度(C*)等颜色参数。选取感兴趣区域获取样品代表性光谱,利用联合区间偏最小二乘法(si PLS)对一阶微分、多元散射校正、标准正态变量变换(SNV)等方法预处理后的光谱数据筛选特征波段,建立冷鲜羊肉颜色各参数的si PLS-ELM神经网络校正模型。对于L*、a*、b*和C*,模型的预测集相关系数(RP)分别为0.9219、0.9391、0.9603和0.8839,预测集均方根误差(RMSEP)分别为1.1935、0.2333、0.6009和0.3586。结果表明:采用可见-近红外高光谱成像技术结合si PLS-ELM神经网络对冷鲜羊肉颜色的快速无损检测是可行的。Abstract: Near- infrared hyperspectral imaging system that was ranging from 400 nm to 1000 nm was used to finish the research of non- destructive and rapid testing of the chilled mutton colors. Hyperspectral images were taken from the 140 chilled mutton samples( storaging 1 ~7 d),and it measured the colors parameters: brightness( L*),redness( a*),yellowness( b*) and saturation( C*). Then it selected an interested area to get a representative sample spectra,and utilized the spectral data which was gotten from the preprocess synergy interval partial least squares regression( si PLS),the first derivative( FD),multiplicative scatter correction( MSC) and SNV and it was used to select the characteristic bands.It established si PLS- ELM neural network calibration model that was based on the colors parameters of the chilled mutton.The correlation coefficient( RP) of the model prediction was 0.9219,0.9391,0.9603,0.8839 which was corresponded to the L*,a*,b*and C*. The root mean square error prediction( RMSEP) was 1.1935,0.2333,0.6009,0.3586. The results showed that: the near- infrared hyperspectral imaging technologies combing with si PLS- ELM neural network was feasible for the non- destructive and rapid testing of the the chilled mutton colors.
-
Keywords:
- hyperspectral imaging technology /
- chilled mutton /
- color parameters /
- si PLS /
- ELM /
- non-destructive detection
-
[1] 刘珂,刘骞.冷却肉品质控制技术[J].肉类工业,2010(6):1-3. [2] 王婉娇,王松磊,贺晓光,等.冷鲜羊肉冷藏时间和水分含量的高光谱无损检测[J].食品科学,2015,36(16):112-116. [3] 朱彤,王宇,杨君娜,等.肉色研究的概况及最新进展[J].肉类研究,2008(2):11-18. [4] 郭中华,王磊,金灵,等.基于近红外透射光谱的乳制品蛋白质、脂肪含量检测[J].光电子·激光,2013,24(6):1163-116. [5] 吴龙国,何建国,刘贵珊,等.基于近红外高光谱成像技术的长枣含水量无损检测[J].光电子·激光,2014,25(1):135-140. [6] THYHOLT K,SAKSSON T.Differentiation of frozen and unfrozen beef using near-infrared spectroscopy[J].Journal of the Science of Food and Agriculture,1997,73(4):525-532.
[7] 王文秀,彭彦昆.基于近红外光谱的冷鲜肉-解冻肉的判别研究[J].食品安全质量检测学报,2014,5(3):754-760. [8] Qiao J,Ngadimo,Wang N,et al.Pork quality and marbling level assessment using a hyperspectral imaging system[J].Journal of Food Engineering,2007,83(1):10-16.
[9] Qiao J,Wang N,Ngadimo,et al.Prediction of driploss,p H,and color for pork using a hyperspectral imaging technique[J].Meat Science,2007,76(l):1-8.
[10] Naganathan G K,Grimes L M.Partial least square analysis of near-infrared hyperspectral imagesfor beef tenderness prediction[J].Sensing and Instrumentation for Food Quality and Safety,2008,2(3):178-188.
[11] Naganathan G K,Grimes L M.Visible/near-infrared hyperspectral imaging for beef tenderness prediction[J].Computers and Electronics in Agriculture,2008,64(2):225-233.
[12] 邹小波,李志华,石吉勇,等.高光谱成像技术检测肴肉新鲜度[J].食品科学,2014,35(8):89-93. [13] 吴建虎,彭彦昆,陈菁菁,等.基于高光谱散射特征的牛肉品质参数的预测研究[J].光谱学与光谱分析,2010,30(7):1815-1819. [14] 赵杰文,毕夏坤,林颢,等.鸡蛋新鲜度的可见-近红外透射光谱快速识别[J].激光与光电子学进展,2013,50(5):1-8. [15] Huang G B,Zhu Q Y,Siew C K.Extreme learning machine:a new learning scheme of feed forward neural networks[C].Budapest,Hungary:In Proceedings of the International Joint Conference on Neural Networks,2004:985-990.
[16] Guangbin Huang,Hongming Zhou,Xiaojian Ding,et al.Extreme learning machine for regression and multiclass classification[J].IEEE Transactions on Systems Man and Cybernetics,Part B:Cy-bernetics,2012,42(2):513-529.
-
期刊类型引用(10)
1. 靳羽慧,刘晓媛,李飞,肖会双,李建芳. 酒酿绿茶馒头的护色剂筛选及配方优化. 食品科技. 2025(01): 172-178 . 百度学术
2. 高林林,骆勇,陈紫麟,魏永真,王周利,赵子丹. 响应面法优化榆黄菇/秀珍菇面包配方及品质分析. 山西农业大学学报(自然科学版). 2024(03): 89-98 . 百度学术
3. 董梦飞,郭兴凤,朱婷伟,赵树超. 不同种类大豆蛋白对冷冻发酵面团馒头品质的影响机制. 中国油脂. 2023(12): 58-64 . 百度学术
4. 黄璟,梁丽婷,OMEDI Jacob Ojobi,陈诚,郭睿珺,黄卫宁,曾永青,李宁,高铁成,周立源. 戊糖片球菌发酵猕猴桃对面包香气与烘焙特性的影响. 食品与机械. 2022(01): 3-14 . 百度学术
5. 朱雯,梁建芬. 猴头菇粉在面包中的应用研究. 食品科技. 2022(08): 110-116 . 百度学术
6. 罗昆,曹伟超,马子琳,武盟,Omedi Jacob OJOBI,郑建仙,黄卫宁,李宁,Filip ARNAUT. 高产植酸酶乳酸菌发酵对黑豆面包蛋白质品质及烘焙特性的影响. 食品科学. 2021(06): 111-117 . 百度学术
7. 孙玉清,田文静,刘小飞. 天然酸面团发酵剂对面包品质的影响. 食品工业. 2021(06): 97-101 . 百度学术
8. 许可,王宏伟,苏东民,谢晓筱,王雅茹,唐洒洒,张艳艳,刘兴丽,张华. 发酵时间对面团加工特性及馕饼品质的影响. 中国粮油学报. 2021(10): 8-15 . 百度学术
9. 王婷,余浩闻,王晓闻,陈振家. 酒酿发酵面包的研究. 食品科技. 2020(08): 162-168 . 百度学术
10. 徐伟,马婷婷,李佳美,马智宇,柴丽娜. 发酵时间对俄式面包面团有机酸形成及其酸感的影响. 食品工业科技. 2019(22): 82-86+92 . 本站查看
其他类型引用(10)
计量
- 文章访问数: 184
- HTML全文浏览量: 30
- PDF下载量: 177
- 被引次数: 20