• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

冷鲜羊肉品质的高光谱成像无损检测

杨菊梅, 贺晓光, 王松磊, 丁佳兴, 强锋, 王芹志

杨菊梅, 贺晓光, 王松磊, 丁佳兴, 强锋, 王芹志. 冷鲜羊肉品质的高光谱成像无损检测[J]. 食品工业科技, 2016, (22): 84-89. DOI: 10.13386/j.issn1002-0306.2016.22.008
引用本文: 杨菊梅, 贺晓光, 王松磊, 丁佳兴, 强锋, 王芹志. 冷鲜羊肉品质的高光谱成像无损检测[J]. 食品工业科技, 2016, (22): 84-89. DOI: 10.13386/j.issn1002-0306.2016.22.008
YANG Ju-mei, HE Xiao-guang, WANG Song-lei, DING Jia-xing, QIANG Feng, WANG Qin-zhi. Nondestructive detection of quality of chilled mutton using hyperspectral imaging technique[J]. Science and Technology of Food Industry, 2016, (22): 84-89. DOI: 10.13386/j.issn1002-0306.2016.22.008
Citation: YANG Ju-mei, HE Xiao-guang, WANG Song-lei, DING Jia-xing, QIANG Feng, WANG Qin-zhi. Nondestructive detection of quality of chilled mutton using hyperspectral imaging technique[J]. Science and Technology of Food Industry, 2016, (22): 84-89. DOI: 10.13386/j.issn1002-0306.2016.22.008

冷鲜羊肉品质的高光谱成像无损检测

详细信息
    作者简介:

    杨菊梅(1991-),女,在读硕士研究生,研究方向:农产品无损检测,E-mail:1255499035@qq.com。;

    贺晓光(1963-),男,教授,主要从事食品加工与食品机械方面的教学和科研工作,E-mail:13995015705@163.com。;

  • 中图分类号: TS251.53

Nondestructive detection of quality of chilled mutton using hyperspectral imaging technique

  • 摘要: 利用4001000 nm可见近红外高光谱成像系统对冷鲜羊肉蛋白质含量、嫩度、p H进行无损检测研究。采集冷鲜羊肉表面的高光谱散射图像,提取样本感兴趣区域的反射光谱曲线获得原始数据。先对原始光谱预处理并建立偏最小二乘回归(PLSR)模型,优选最佳预处理方法,后采用正自适应加权算法(CARS)和连续投影算法(SPA)提取特征波长,建立不同特征波长下各品质参数的PLSR预测模型。结果表明:利用原始光谱建立的冷鲜羊肉蛋白质、嫩度和p H的PLSR模型均优于经过光谱预处理所建PLSR模型;在不同波长下建立预测模型,OS-PLSR光谱模型对冷鲜羊肉蛋白质含量预测效果最佳,Rp=0.869,RMSEP=0.097;建立的SPA-PLSR光谱预测模型对p H预测效果理想,Rp=0.958,RMSEP=0.067;CARS-PLSR光谱预测模型对嫩度的预测能力较高,Rp=0.862,RMSEP=0.706。研究表明:利用可见近红外高光谱技术对冷鲜羊肉品质进行快速无损检测是可行的。 
    Abstract: Visible / near infrared hyperspectral imaging system ranging from 400 nm to 1000 nm was investigated for non- destructive determination of protein content,p H value and tenderness in chilled mutton. Collected the hyperspectral scattering image of chilled mutton and extracted the reflectance spectrum at range of interest.Firstly,the partial least squares regression( PLSR) model was established by the pretreatment of original spectrum to prefer the best pretreatment method. Then,the successive projections algorithm( SPA) and competitive adaptive reweighed sampling( CARS) were used to select characteristic wavelengths,the PLSR prediction models of protein content,p H value and tenderness under the characteristic wavelengths were set up and analyzed. The results showed that using original spectrum to establish OS- PLSR models for predicting protein content,p H value and tenderness were better than the PLSR models constructed by pretreatment spectrum; the PLSR prediction model of protein content under full wavelengths has the best effect,the correlation coefficient of prediction( Rp) and the predict root mean square error( RMSEP) were 0.869 and 0.097. The result of SPA- PLSR model for predicting p H value was ideal and RP value was 0.958,RMSEP value was 0.067. The result of CARS- PLSR model for predicting tenderness has high predictive power and the RP value was 0.862,RMSEP value was 0.706.Therefore,visible / near infrared hyperspectral imaging technology is feasible for non- destructive determination of protein content,p H value and tenderness in chilled mutton.
  • [1] 王文秀,彭彦昆.基于近红外光谱的冷鲜肉-解冻肉的判别研究[J].食品安全质量检测学报,2014,5(3):754-760.
    [2] 李斌,康壮丽,龚宸,等.基于低场核磁共振技术分析冷冻和冷却猪肉乳化香肠的品质差异[J].食品工业科技,2015,24:142-150.
    [3] 王婉娇,王松磊,贺晓光,等.冷鲜羊肉冷藏时间和水分含量的高光谱无损检测[J].食品科学,2015,36(16):112-116.
    [4] 任发政,李兴民,张原飞编译.现代肉品加工与质量控制[M].北京:中国农业大学出版社,2006:179-190.
    [5]

    Gowen A A,O’donnell C P,Cullen P J,et al.Hyperspectral imaging-an emerging process analytical tool for food quality and safety control[J].Trends in Food Science Technology,2007,18:590-598.

    [6] 王婉娇,王松磊,贺晓光,等.NIR高光谱成像技术检测冷鲜羊肉嫩度[J].食品工业科技,2015,36(20):77-91.
    [7] 赵俊华,郭培源,邢素霞,等.基于高光谱成像的腊肉细菌总数预测建模方法研究[J].中国调味品,2016,41(2):74-78.
    [8]

    El Masry G,Sun Da-wen,Allen P.Near-infrared hyperspectral imaging for predicting colour,p H and tenderness of fresh beef[J].Journal of Food Engineering,2012,110:127-140.

    [9]

    Thyholt K,Isaksson T.Differentiation of frozen and unfrozen beef using near-infrared spectroscopy[J].Journal of the Science of Food and Agriculture,1997,73(4):525-532.

    [10] 吴建虎,彭彦昆.基于高光谱散射特征的牛肉品质参数的预测研究[J].光谱学与光谱分析,2010,30(7):1815-1819.
    [11]

    Savenije B,Geesink G H,Van-der-Palen J G P,et al.Prediction of pork quality using visible/near-infrared reflectance spectroscopy[J].Meat Science,2006,73(1):181-184.

    [12]

    Mohammed K,Gamal E,Da-Wen Sun.Prediction of some quality attributes of Lamb meat using near-infrared hyperspectral imaging and multivariate analysis[J].Analytica Chimica Acta,2012(714):57-67.

    [13] 张雷蕾,李永玉,彭彦昆,等.基于高光谱成像技术的猪肉新鲜度评价[J].农业工程学报,2012,28(7):254-259.
    [14] 王正伟,王家云,王松磊,等.基于VIS-NIR高光谱成像技术检测鸡肉嫩度[J].食品科技,2015,40(11):270-274.
    [15] 赵杰文,惠喆,黄林,等.高光谱成像技术检测鸡肉中挥发性盐基氮含量[J].激光与光电子学进展,2013,50(7):1-7.
    [16] 李媛媛,赵钜阳,齐鹏辉,等.高光谱成像技术在红肉质量特性无损检测中的应用[J].食品工业,2016,37(1):264-269.
    [17] 刘魁武,成芳,林宏建,等.可见/近红外光谱检测冷鲜猪肉中的脂肪、蛋白质和水分含量[J].光谱学与光谱分析,2009,29(1):102-105.
    [18] 陶斐斐,王伟,李永玉,等.冷却猪肉表面菌落总数的快速无损检测方法研究[J].光谱学与光谱分析,2010,30(12):3405-3409.
    [19]

    Leroy B,Lambotte S,Dotreppe O.Prediction of technological and organoleptic properties of beef Longissimus thoracis from near-infrared reflectance and transmission spectra[J].Meat Science,2004,66(1):45-54.

    [20] 吴龙国,何建国,刘贵珊,等.基于近红外高光谱成像技术的长枣含水量无损检测[J].光电子激光,2014,25(1):135-140.
    [21] 金灵.基于高光谱技术的宁夏滩羊肉内部品质检测方法研究[D].宁夏:宁夏大学,2014:1-51.
    [23] 郭红艳,刘贵珊,吴龙国,等.基于高光谱成像的马铃薯环腐病无损检测[J].食品科学,2016:1-7.
    [24] 赵杰文,林颢.食品农产品检测中的数据处理和分析方法[M].北京:科学出版社,2012:4-5.
计量
  • 文章访问数:  185
  • HTML全文浏览量:  31
  • PDF下载量:  272
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭