• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

机械搅拌发酵产细菌纤维素的中试研究

许云华, 朱春林, 张衡, 孙汴京, 自强, 顾焱, 孙东平

许云华, 朱春林, 张衡, 孙汴京, 自强, 顾焱, 孙东平. 机械搅拌发酵产细菌纤维素的中试研究[J]. 食品工业科技, 2016, (20): 183-188. DOI: 10.13386/j.issn1002-0306.2016.20.028
引用本文: 许云华, 朱春林, 张衡, 孙汴京, 自强, 顾焱, 孙东平. 机械搅拌发酵产细菌纤维素的中试研究[J]. 食品工业科技, 2016, (20): 183-188. DOI: 10.13386/j.issn1002-0306.2016.20.028
XU Yun-hua, ZHU Chun-lin, ZHANG Heng, SUN Bian-jing, ZI Qiang, GU Yan, SUN Dong-ping. Mechanical stirring fermentation pilot study of bacterial cellulose[J]. Science and Technology of Food Industry, 2016, (20): 183-188. DOI: 10.13386/j.issn1002-0306.2016.20.028
Citation: XU Yun-hua, ZHU Chun-lin, ZHANG Heng, SUN Bian-jing, ZI Qiang, GU Yan, SUN Dong-ping. Mechanical stirring fermentation pilot study of bacterial cellulose[J]. Science and Technology of Food Industry, 2016, (20): 183-188. DOI: 10.13386/j.issn1002-0306.2016.20.028

机械搅拌发酵产细菌纤维素的中试研究

基金项目: 

国家自然科学基金(21206076); 江苏省高等职业院校国内高级访问学者计划资助项目(2015FX032); 江苏省高校自然科学研究面上项目资助(16KJB180034);

详细信息
    作者简介:

    许云华(1968-),女,硕士,副教授,研究方向:微生物学、生理学,E-mail:xyh6322@126.com。;

    孙东平(1970-),男,博士,教授,研究方向:生物功能材料、微生物工程等,E-mail:dongpingsun@163.com。;

  • 中图分类号: TQ920.6;O636.11

Mechanical stirring fermentation pilot study of bacterial cellulose

  • 摘要: 细菌纤维素的中试发酵实验研究是其工业化生产的必经阶段,有着极为重要的研究价值和意义。利用实验室20 L-50 L-100 L机械搅拌发酵罐系统对发酵生产细菌纤维素进行了中试实验,测定了葡糖杆菌在20 L种子罐中的生长曲线,研究了不同培养级数的种子对100 L机械发酵罐的影响,采用转速-溶氧(DO)联动控制法提高发酵中后期的溶氧水平和纤维素产量。结果表明,在种子生长曲线对数期的中后期(3048 h)移种较佳,使用三级种子移种比一级和二级种子移种的发酵周期分别短62 h和14 h,保持移种后发酵罐的菌体浓度在2.0×107CFU/m L以上对缩短发酵过程延滞期有利,转速-DO联动控制可保证发酵中后期DO维持在30%左右,纤维素产量由2.2 g/L提高至2.8 g/L。细菌纤维素的中试实验结果对探索生产工艺、缩短发酵周期、降低生产成本、提高纤维素产量等方面有明显改善,为其工业化生产奠定了基础。 
    Abstract: The pilot fermentation experiment of bacterial cellulose( BC) is a necessary stage for its industrial production.It has a very important value and significance. The pilot fermentation experiment were systematically researched using 20 L- 50 L- 100 L laboratory stirred tank fermentation system. The growth curve of Komagataeibacter nataicola seeds at 20 L fermentor were determined. The effects of different seed culture series on 100 L mechanical fermentation tank were studied. To improve the level of dissolved oxygen,stirring speed-dissolved oxygen( DO) linkage control method were used during fermentation and cellulose production.The results showed that suitable inoculation period was in the middle and late stage of logarithmic phase( 30 ~ 48 h). The fermentation period using grade three seed was 62 h and 14 h shorter than grade one and two,respectively. To shorten the fermentation process delay time,the bacteria concentration in the fermentation tank was more than 2.0× 107 CFU / m L after inoculation with bacteria. Stirring speed- DO linkage control could ensure DO maintained at around 30% and increased BC yield to 2.8 g / L.This research was beneficial with shortening the fermentation cycle,reducing the production cost,improving the yield of cellulose,and laying foundations for the industrial production.The pilot experiment study results of BC had a significant improvement in the production process.
  • [1] 余晓斌,卞玉荣,全文海.细菌纤维素的商业化用途[J].纤维素科学与技术,1999,7(3):42-46.
    [2] 王先秀.新型的微生物合成材料——醋酸菌纤维素[J].中国酿造,1999,18(1):1-2.
    [3]

    Tonouchi N,Tsuchida T,Yoshinaga F,et al.Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum[J].Bioscience Biotechnology and Biochemistry,1996,60:1377-1379.

    [4]

    Gindl W,Keckes J.Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose[J].Composites Science and Technology,2004,64:2407-2413.

    [5]

    Tajima K,Fujiwara M,Takai M,et al.Synthesis of Acetobacter xylinum bacterial cellulose composite and its mechanical strength and biodegradability[J].Mokuzai Gakkaishi,1995,41(8):749-757.

    [6]

    Xiao L,Mai Y,He F.Bio-based green composites with high performance from poly(lactic acid)and surfacemodified microcrystalline cellulose[J].Journal of Materials Chemistry,2012,22(31):15732-15739.

    [7]

    Nasehi B,Javaheri S.Application of high hydrostatic pressure in modifying functional properties of starches:A Review[J].MidEast J Sci Res,2012,11(7):856-861.

    [8]

    Sara M S,JoséM C,Ester Q,et al.Characterization of purified bacterial cellulose focused on its use on paper restoration[J].Carbohydr Polym,2015,116:173-181.

    [9]

    Yousefi H,Faezipour M,Hedjazi S,et al.Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw[J].Ind Crop Prod,2013,43(1):732-737.

    [10]

    Wu J,Zheng Y,Song W,et al.In situ synthesis of silvernanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing[J].Carbohydr Polym,2014,102(4):762-771.

    [11]

    Silva N H C S,Drumond I,Almeida A F,et al.Topical caffeine delivery using biocellulose membranes:A potential innovative system for cllulite treatment[J].Cellulose,2014,21:665.

    [12]

    Lacin,Nelisa T.Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing[J].Int J Biol Macromol,2014,67(6):22-27.

    [13] 范兆乾.细菌纤维素的生产研究进展[J].化学工业与工程技术,2013,34(1):51-54.
    [14] 孙勇慧,刘鹏涛,刘忠.细菌纤维素的应用研究进展[J].材料导报A:综述篇,2015,29(3):62-67.
    [15] 刘四新,李从发,李枚秋,等.纳塔产生菌的分离鉴定和发酵特性研究[J].食品与发酵工业,1999,25(6):37-41.
    [16] 余晓斌,卞玉荣,全文海,等.细菌纤维素高产菌的选育[J].纤维素科学与技术,1999,7(4):63-66.
    [17] 赵琼,杨谦.细菌纤维素高产菌株的紫外诱变育种研究[J].食品与发酵工业,2007,33(7):26-28.
    [18] 马霞.发酵生产细菌纤维素及其作为医学材料的应用研究[D].天津:天津科技大学,2003.
    [19] 杨光,王彩霞.以腐烂水果为营养源高效制备细菌纤维素[J].纤维素科学与技术,2015,23(4):67-70.
    [20] 李斌,钟春燕,王锡彬,等.椰子水与菠萝汁生产细菌纤维素的对比研究[J].中国酿造,2014,33(6):27-30.
    [21] 谢健健,洪枫.细菌纤维素发酵原料的研究进展[J].纤维素科学与技术,2011,19(3):68-77.
    [22] 吕鸿皓,黄莉,党苗苗,等.利用大豆糖蜜制备细菌纤维素[J].食品研究与开发,2015,36(20):165-168.
    [23] 薛璐,杨谦.醋杆菌产纤维素发酵培养基的优化[J].食品科学,2004,25(11):213-215.
    [24]

    Park J K,Jung J Y,Park Y H.Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol[J].Biotechnology Letters,2003,25:2055-2059.

    [25] 欧竑宇,贾士儒,马霞.细菌纤维素发酵培养基的优化[J].食品与发酵工业,2002,29(1):18-22.
    [26]

    Kouda T,Yano H,Yoshinaga F.Effect of agitator configuration on bacterial cellulose productivity in aerated and agitated culture[J].Journal of Fermentation and Bioengineering,1997,83(4):371-376.

    [27]

    Chao Y,Ishida T,Sugano Y,Shoda M.Bacterial cellulose production by Acetobacter xylinum in a 50-l internal-loop airlift reactor[J].Biotechnology and Bioengineering,2000,68:345-352.

    [28]

    Cheng H P,Wang P M,Chen J W,et al.Cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor[J].Biotechnology and Applied Biochemistry,2002,35:125-132.

    [29]

    Park J K,Hyun S H,Jung J Y.Conversion of G.hansenii PJK into non-cellulose-producing mutants according to the culture condition[J].Biotechnology and Bioprocess Engineering,2004,9(5):383-388.

    [30]

    Jung J Y,Park J K,Chang H N.Bacterial cellulose production by Gluconacetobacter hansenii in an agitated culture without living non-cellulose producing cells[J].Enzyme and Microbial Technology,2005,37(3):347-354.

    [31] 杨雪霞,董超,陈琳,等.剪切力对木葡糖醋杆菌及细菌纤维素合成的影响[J].纤维素科学与技术,2013,21(2):9-14.
    [32] 周伶俐.细菌纤维素生产菌的筛选、发酵及应用的研究[D].南京:南京理工大学,2008.
    [33] 兰水.不同碳源机械搅拌发酵制备细菌纤维素的研究[D].上海:东华大学,2014.
    [34] 周莲,陈莉,卢红梅,等.木醋杆菌发酵产细菌纤维素的动力学研究[J].中国调味品,2016,41(3):21-25.
    [35] 马霞,王瑞明,察可文,等.气升罐发酵生产细菌纤维素的动力学模型的确定[J].食品研究与开发,2006,27(7):64-67.
计量
  • 文章访问数:  154
  • HTML全文浏览量:  9
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-29

目录

    /

    返回文章
    返回
    x 关闭 永久关闭